1,889 research outputs found

    MIMO nonlinear PID predictive controller

    Get PDF
    A class of nonlinear generalised predictive controllers (NGPC) is derived for multi-input multi-output (MIMO) nonlinear systems with offset or steady-state response error. The MIMO composite controller consists of an optimal NGPC and a nonlinear disturbance observer. The design of the nonlinear disturbance observer to estimate the offset is particularly simple, as is the associated proof of overall nonlinear closed-loop system stability. Moreover, the transient error response of the disturbance observer can be arbitrarily specified by simple design parameters. Very satisfactory performance of the proposed MIMO nonlinear predictive controller is demonstrated for a three-link nonlinear robotic manipulator example

    Magnus Effect in Duct Flow

    Get PDF
    The following research paper details the preliminary research carried out by this team. The project was originally conceived to determine if Magnus Lift could be utilized in an unconventional way to assist rockets during takeoff. Several conceptual designs were proposed, but the idea was scrapped when it became apparent that the team would not be able to generate the desired lift without inducing significant amounts of drag and additional weight on a rocket. Instead, the team focused on researching an interesting topic that hasn’t been previously explored: Magnus lift on a cylinder within a duct. An experimental procedure that could be carried out in a wind tunnel at the University of Akron was designed along with several models for a test fixture. In order to predict the results of the experiment, several preliminary CFD simulations were performed. Unfortunately, due to limited time and resources, the test fixture was not built and the experiment was not carried out. However, more detailed simulations were performed. Unfortunately, the results suggested that minimal lift is generated on a duct/cylinder system compared to a spinning cylinder in open air. Several potential applications for utilizing the Magnus effect were suggested, such as assisting rockets during takeoff, or allowing trains to enter curves at higher speeds without derailing. Although Magnus effect in duct flow would likely provide negligible benefits, the potential uses for Magnus lift in open air are promising

    Magnus Effect in Duct Flow

    Get PDF
    The following research paper details the preliminary research carried out by this team. The project was originally conceived to determine if Magnus Lift could be utilized in an unconventional way to assist rockets during takeoff. Several conceptual designs were proposed, but the idea was scrapped when it became apparent that the team would not be able to generate the desired lift without inducing significant amounts of drag and additional weight on a rocket. Instead, the team focused on researching an interesting topic that hasn’t been previously explored: Magnus lift on a cylinder within a duct. An experimental procedure that could be carried out in a wind tunnel at the University of Akron was designed along with several models for a test fixture. In order to predict the results of the experiment, several preliminary CFD simulations were performed. Unfortunately, due to limited time and resources, the test fixture was not built and the experiment was not carried out. However, more detailed simulations were performed. Unfortunately, the results suggested that minimal lift is generated on a duct/cylinder system compared to a spinning cylinder in open air. Several potential applications for utilizing the Magnus effect were suggested, such as assisting rockets during takeoff, or allowing trains to enter curves at higher speeds without derailing. Although Magnus effect in duct flow would likely provide negligible benefits, the potential uses for Magnus lift in open air are promising

    Coombs Hill: A Late Devonian fossil locality in the Witpoort Formation (Witteberg Group, South Africa)

    Get PDF
    Coombs Hill, a new fossil locality in the Witpoort Formation (Witteberg Group) of South Africa, preserves a record of Famennian (Late Devonian) life in Gondwana. Fossil plants collected at Coombs Hill are preliminarily assigned to several classes. Shelly invertebrates include a variety of bivalve mollusc forms, some of which appear to be preserved in life position. Biodiversity at Coombs Hill is comparable to that of the well-known Waterloo Farm lagerstätte in ordinal diversity, but exhibits differences in species composition. Ongoing taxonomic analysis will provide a rare window into the ecology of high-latitude environments during this pivotal stage of Earth history, which immediately preceded the end-Devonian extinction. Sandstone dominated sedimentary facies at Coombs Hill suggest a high-energy coastal marine setting, with brackish back-barrier estuarine/lagoonally derived fossiliferous mudstones. Exact stratigraphic placement within the Witpoort Formation is hampered by structural deformation, and precise age comparisons with Waterloo Farm are currently tenuous.Significance: A new fossil locality at Coombs Hill comprises the second known site with a suite of well preserved continental and marginal marine fossils from the Witpoort Formation, providing an exceptionally rare example of high-latitude life during the critical latest Devonian Famennian age. Several new plant taxa will be diagnosed from this locality, which also gives important insights into the morphology of Archaeopteris notosaria, South Africa’s earliest known tree. Discovery of a second palaeontologically significant site in the Witpoort Formation provides impetus for further structural and sedimentary facies analyses to align the unit with datable global eustatic events, and to clarify its internal chronology

    MIMO nonlinear PID predictive controller

    Full text link

    Working with Children with Learning Disabilities and/or who Communicate Non-verbally: Research experiences and their implications for social work education, increased participation and social inclusion

    Get PDF
    Social exclusion, although much debated in the UK, frequently focuses on children as a key 'at risk' group. However, some groups, such as disabled children, receive less consideration. Similarly, despite both UK and international policy and guidance encouraging the involvement of disabled children and their right to participate in decision-making arenas, they are frequently denied this right. UK based evidence suggests that disabled children's participation lags behind that of their non-disabled peers, often due to social work practitioners' lack of skills, expertise and knowledge on how to facilitate participation. The exclusion of disabled children from decision-making in social care processes echoes their exclusion from participation in society. This paper seeks to begin to address this situation, and to provide some examples of tools that social work educators can introduce into pre- and post-qualifying training programmes, as well as in-service training. The paper draws on the experiences of researchers using non-traditional qualitative research methods, especially non-verbal methods, and describes two research projects, focusing on the methods employed to communicate with and involve disabled children, the barriers encountered and lessons learnt. Some of the ways in which these methods of communication can inform social work education are explored alongside wider issues of how and if increased communication can facilitate greater social inclusion

    The Formation of Brown Dwarfs as Ejected Stellar Embryos

    Get PDF
    We conjecture that brown dwarfs are substellar objects because they have been ejected from small newborn multiple systems which have decayed in dynamical interactions. In this view, brown dwarfs are stellar embryos for which the star formation process was aborted before the hydrostatic cores could build up enough mass to eventually start hydrogen burning. The disintegration of a small multiple system is a stochastic process, which can be described only in terms of the half-life of the decay. A stellar embryo competes with its siblings in order to accrete infalling matter, and the one that grows slowest is most likely to be ejected. With better luck, a brown dwarf would therefore have become a normal star. This interpretation of brown dwarfs readily explains the rarity of brown dwarfs as companions to normal stars (aka the ``brown dwarf desert''), the absence of wide brown dwarf binaries, and the flattening of the low mass end of the initial mass function. Possible observational tests of this scenario include statistics of brown dwarfs near Class 0 sources, and the kinematics of brown dwarfs in star forming regions while they still retain a kinematic signature of their expulsion. Because the ejection process limits the amount of gas brought along in a disk, it is predicted that substellar equivalents to the classical T Tauri stars should be very rare.Comment: 8 pages, 1 figure, Accepted by the Astronomical Journa

    Regular symmetry patterns

    Get PDF
    Symmetry reduction is a well-known approach for alleviating the state explosion problem in model checking. Automatically identifying symmetries in concurrent systems, however, is computationally expensive. We propose a symbolic framework for capturing symmetry patterns in parameterised systems (i.e. an infinite family of finite-state systems): two regular word transducers to represent, respectively, parameterised systems and symmetry patterns. The framework subsumes various types of "symmetry relations" ranging from weaker notions (e.g. simulation preorders) to the strongest notion (i.e. isomorphisms). Our framework enjoys two algorithmic properties: (1) symmetry verification: given a transducer, we can automatically check whether it is a symmetry pattern of a given system, and (2) symmetry synthesis: we can automatically generate a symmetry pattern for a given system in the form of a transducer. Furthermore, our symbolic language allows additional constraints that the symmetry patterns need to satisfy to be easily incorporated in the verification/synthesis. We show how these properties can help identify symmetry patterns in examples like dining philosopher protocols, self-stabilising protocols, and prioritised resource-allocator protocol. In some cases (e.g. Gries's coffee can problem), our technique automatically synthesises a safety-preserving finite approximant, which can then be verified for safety solely using a finite-state model checker.UPMAR
    • …
    corecore