50 research outputs found

    Biomineralisation in the Palaeozoic oceans: evidence for simultaneous crystallisation of high and low magnesium calcite by phacopine trilobites

    Get PDF
    The chemical composition and microstructure of the calcite cuticles of eleven species of phacopine trilobites have been investigated by electron beam imaging, diffraction, and microanalysis, and results reveal that the lenses of their schizochroal eyes differed signiïŹcantly in chemical composition from the rest of the cuticle in vivo. Apart from the eye lenses, most cuticles are inferred to have escaped extensive recrystallisation because their constituent crystals are sub-micrometre in size and have a preferred orientation that is consistent between species. Their current compositions of ~1.4 to 2.4 mol% MgCO3 are likely to be close to original values, although as they commonly luminesce and contain detectable manganese and iron, some diagenetic alteration has taken place. The associated lenses have a microstructure that is suitable for focusing light, yet are optically turbid owing to the presence within calcite of micropores and crystals of microdolomite, apatite, celestite and pyrite. The microdolomite indicates that lenses recrystallised from an original high-Mg calcite composition and this is supported by the presence of nanometre-scale modulated microstructures in both the calcite and dolomite. These lenses currently contain ~1 to 6 mol% MgCO3, and by comparison with the proportion of magnesium lost from echinoderm stereom in the same thin sections, may have contained ~7.5 mol% MgCO3 in vivo. In some samples, more extensive diagenetic alteration is evidenced by recrystallisation of the cuticle including lenses to coarse equant calcite or enrichment of the cuticle, but not necessarily the lenses, in magnesium accompanying replacement by a Mg–Fe phyllosilicate. The phacopine trilobites had to modify partition coefïŹcients for magnesium considerably in order to grow lenses with contrasting compositions to the rest of their cuticles, and such a strong vital effect on biomineralisation suggests that incorporation of magnesium was essential for functioning of their calcite optical s

    Age, sex, and socioeconomic differences in multimorbidity measured in four ways:UK primary care cross-sectional analysis

    Get PDF
    Background: Multimorbidity poses major challenges to healthcare systems worldwide. Definitions with cut-offs in excess of ≄2 long-term conditions (LTCs) might better capture populations with complexity but are not standardised. Aim: To examine variation in prevalence using different definitions of multimorbidity. Design and setting: Cross-sectional study of 1 168 620 people in England. Method: Comparison of multimorbidity (MM) prevalence using four definitions: MM2+ (≄2 LTCs), MM3+ (≄3 LTCs), MM3+ from 3+ (≄3 LTCs from ≄3 International Classification of Diseases, 10th revision chapters), and mental–physical MM (≄2 LTCs where ≄1 mental health LTC and ≄1 physical health LTC are recorded). Logistic regression was used to examine patient characteristics associated with multimorbidity under all four definitions. Results: MM2+ was most common (40.4%) followed by MM3+ (27.5%), MM3+ from 3+ (22.6%), and mental–physical MM (18.9%). MM2+, MM3+, and MM3+ from 3+ were strongly associated with oldest age (adjusted odds ratio [aOR] 58.09, 95% confidence interval [CI] = 56.13 to 60.14; aOR 77.69, 95% CI = 75.33 to 80.12; and aOR 102.06, 95% CI = 98.61 to 105.65; respectively), but mental–physical MM was much less strongly associated (aOR 4.32, 95% CI = 4.21 to 4.43). People in the most deprived decile had equivalent rates of multimorbidity at a younger age than those in the least deprived decile. This was most marked in mental–physical MM at 40–45 years younger, followed by MM2+ at 15–20 years younger, and MM3+ and MM3+ from 3+ at 10–15 years younger. Females had higher prevalence of multimorbidity under all definitions, which was most marked for mental–physical MM. Conclusion: Estimated prevalence of multimorbidity depends on the definition used, and associations with age, sex, and socioeconomic position vary between definitions. Applicable multimorbidity research requires consistency of definitions across studies

    The impact of varying the number and selection of conditions on estimated multimorbidity prevalence::a cross-sectional study using a large, primary care population dataset

    Get PDF
    Background: Multimorbidity prevalence rates vary considerably depending on the conditions considered in the morbidity count, but there is no standardised approach to the number or selection of conditions to include. Methods and findings: We conducted a cross-sectional study using English primary care data for 1,168,260 participants who were all people alive and permanently registered with 149 included general practices. Outcome measures of the study were prevalence estimates of multimorbidity (defined as ≄2 conditions) when varying the number and selection of conditions considered for 80 conditions. Included conditions featured in ≄1 of the 9 published lists of conditions examined in the study and/or phenotyping algorithms in the Health Data Research UK (HDR-UK) Phenotype Library. First, multimorbidity prevalence was calculated when considering the individually most common 2 conditions, 3 conditions, etc., up to 80 conditions. Second, prevalence was calculated using 9 condition-lists from published studies. Analyses were stratified by dependent variables age, socioeconomic position, and sex. Prevalence when only the 2 commonest conditions were considered was 4.6% (95% CI [4.6, 4.6] p < 0.001), rising to 29.5% (95% CI [29.5, 29.6] p < 0.001) considering the 10 commonest, 35.2% (95% CI [35.1, 35.3] p < 0.001) considering the 20 commonest, and 40.5% (95% CI [40.4, 40.6] p < 0.001) when considering all 80 conditions. The threshold number of conditions at which multimorbidity prevalence was >99% of that measured when considering all 80 conditions was 52 for the whole population but was lower in older people (29 in >80 years) and higher in younger people (71 in 0- to 9-year-olds). Nine published condition-lists were examined; these were either recommended for measuring multimorbidity, used in previous highly cited studies of multimorbidity prevalence, or widely applied measures of “comorbidity.” Multimorbidity prevalence using these lists varied from 11.1% to 36.4%. A limitation of the study is that conditions were not always replicated using the same ascertainment rules as previous studies to improve comparability across condition-lists, but this highlights further variability in prevalence estimates across studies. Conclusions: In this study, we observed that varying the number and selection of conditions results in very large differences in multimorbidity prevalence, and different numbers of conditions are needed to reach ceiling rates of multimorbidity prevalence in certain groups of people. These findings imply that there is a need for a standardised approach to defining multimorbidity, and to facilitate this, researchers can use existing condition-lists associated with highest multimorbidity prevalence

    Replacing natural wetlands with stormwater management facilities: biophysical and perceived social values

    Get PDF
    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these drivers are relatively fixed, thus, once constructed, it may not be possible to modify them to improve provision of biophysical values; 5) these fixed drivers are not well perceived by the public and thus public perception may not capture the true value of natural wetlands, including those impacted by agriculture

    Reduced lymphatic reserve in heart failure with preserved ejection fraction

    Get PDF
    Background: Microvascular dysfunction plays an important role in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). However, no mechanistic link between systemic microvasculature and congestion, a central feature of the syndrome, has yet been investigated. Objectives: This study aimed to investigate capillary–interstitium fluid exchange in HFpEF, including lymphatic drainage and the potential osmotic forces exerted by any hypertonic tissue Na+ excess. Methods: Patients with HFpEF and healthy control subjects of similar age and sex distributions (n = 16 per group) underwent: 1) a skin biopsy for vascular immunohistochemistry, gene expression, and chemical (water, Na+, and K+) analyses; and 2) venous occlusion plethysmography to assess peripheral microvascular filtration coefficient (measuring capillary fluid extravasation) and isovolumetric pressure (above which lymphatic drainage cannot compensate for fluid extravasation). Results: Skin biopsies in patients with HFpEF showed rarefaction of small blood and lymphatic vessels (p = 0.003 and p = 0.012, respectively); residual skin lymphatics showed a larger diameter (p = 0.007) and lower expression of lymphatic differentiation and function markers (LYVE-1 [lymphatic vessel endothelial hyaluronan receptor 1]: p < 0.05; PROX-1 [prospero homeobox protein 1]: p < 0.001) compared with control subjects. In patients with HFpEF, microvascular filtration coefficient was lower (calf: 3.30 [interquartile range (IQR): 2.33 to 3.88] l × 100 ml of tissue–1 × min–1 × mm Hg–1 vs. 4.66 [IQR: 3.70 to 6.15] ÎŒl × 100 ml of tissue–1 × min–1 × mm Hg–1; p < 0.01; forearm: 5.16 [IQR: 3.86 to 5.43] l × 100 ml of tissue–1 × min–1 × mm Hg–1 vs. 5.66 [IQR: 4.69 to 8.38] ÎŒl × 100 ml of tissue–1 × min–1 × mm Hg–1; p > 0.05), in keeping with blood vascular rarefaction and the lack of any observed hypertonic skin Na+ excess, but the lymphatic drainage was impaired (isovolumetric pressure in patients with HFpEF vs. control subjects: calf 16 ± 4 mm Hg vs. 22 ± 4 mm Hg; p < 0.005; forearm 17 ± 4 mm Hg vs. 25 ± 5 mm Hg; p < 0.001). Conclusions: Peripheral lymphatic vessels in patients with HFpEF exhibit structural and molecular alterations and cannot effectively compensate for fluid extravasation and interstitial accumulation by commensurate drainage. Reduced lymphatic reserve may represent a novel therapeutic target
    corecore