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Abstract 
 

Intervention analyses which incorporate temporality over a followup period typically note 

differences in the patterns of "single-curves" for each the experimental and control groups or 

differences in temporally-based taxonomies between experimentals and controls. But the 

former fails to allow for the possibility of subgroups of multiple trajectories and the latter 

collapses time (e.g., average spell durations) and arbitrarily creates cut-points to form its 

taxonomies. This paper investigates the utility for intervention research of using latent class 

growth analysis (LCGA). This method incorporates the more complete temporal information 

used by single-curve approaches to statistically identify the multiple subgroups at the heart of 

the taxonomic approach. We do this by reanalyzing a critical time intervention study (CTI) of 

homeless mentally ill men that used both single-curve and taxonomic approaches. By finding, 

among other things, differences between experimentals and controls in the number, sizes and 

patterns of latent subgroups than were found in the prior analysis, we suggest the utility of 

LCGA for assessing service interventions. 

Keywords: intervention effects, latent growth class analysis, sequence analysis, 

homelessness, mental health, critical time intervention 
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Introduction 
 

Intervention research commonly estimates impact over some post-intervention time period, 

allowing us to identify temporal differences between intervention and control groups. This 

research, however, does not typically differentiate temporal patterns among individuals 

resulting from the intervention. In this paper, we suggest the utility of latent class growth 

analysis
1, 2

 for gauging different effects on individual life trajectories. We do this by re-

analyzing data from a randomized critical time intervention (CTI) trial designed to prevent 

recurrent homelessness among men with mental disorders. The prior analysis,
3
 used an 18-

month observation period to identify several temporal effects: the intervention group 

averaged 61 fewer nights homeless; it had half the number of homeless episodes; and its 

differences from the control group in the probability of extended homelessness grew over 

time. This paper carries the analysis further by demonstrating how latent class growth 

analysis can identify different, latent, temporal patterns among individuals resulting from the 

intervention. By using more of the temporal information in the data and by allowing 

individuals to vary from each other over time, this analysis portrays a more nuanced dynamic 

of temporal change than the prior analysis. As a result, it better specifies how subgroups, 

characterized by different dynamics, were differentially affected by CTI. 

 

 

Background 
 
Time in homeless intervention research. Intervention research usually focuses on estimating 

impacts over time without differentiating patterns among individuals. Most commonly, 

studies estimate differences between test and control/comparison groups in means, 

proportions and standard deviations at two or more post-intervention time points.
4-11

 Point-in-

time measures, however, elide temporality, and taking several such measures at a few post-

intervention time points (e.g., at 6, 12 and 18 months) may produce too small a sample of the 

universe of time points program models imply. Further, we do not know if these are the right 

time points to be sampled. Choices seem to be driven by weak theoretical expectations and 

strong emphases on culturally accepted time points for a twelve-month calendar. More 

sophisticated but less common approaches have used time series analysis on a cross-

sectionally measured time series on the outcome of interest;
12

 random effects models to 

evaluate change over the post-intervention time period;
13

 or, as in the CTI analysis, survival 

analysis to construct probability curves of post-intervention response.
3
 These approaches 

offer great advances in estimating impact over time but, like point-in-time analyses, they 

allow only one curve each to be found for test and control groups. They in effect assume 

variation around the relevant statistic(s) is random. These "single-curve" approaches do not 

differentiate subgroups of individuals within the test and control groups on the basis of shared 

responses on the outcome of interest. (Subgroup analyses are possible, of course, but 

subgroup membership is defined by shared gender, ethnicity, education and so forth, rather 

than by similarities in the outcome of interest.) 

 

 Efforts to differentiate such subgroups have created taxonomies based on individuals sharing 

similar values on the outcome of interest (alone or combined with other traits) over the entire 
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post-intervention time period.
3, 14, 15

 One approach has been to aggregate or average data for 

each individual over the post-intervention period and create cut-points to form subgroups. For 

example, total nights homeless, number of homeless spells and average spell duration are 

common measures. Cut-points for one or some combination of measures are then subjectively 

created, generating subgroups. Commonly, a taxonomy of transient, episodic and chronic 

homeless is developed.
14, 16-18

 Aggregating data, however, fails to show intervention impact 

on ordering and timing of the outcome of interest. It does not distinguish, for example, 

someone homeless the first three months of follow-up from someone homeless any other 

three month period. Thus, aggregation does not use available temporal information that helps 

us better specify impact. Further, cut-points are commonly not derived from either theory or 

data but created using arbitrary decision rules. This risks creating subgroups that are not very 

meaningful for assessing the theory and practice of an intervention and may generate 

significant within-subgroup heterogeneity, making it harder to find effects. Last, because 

these taxonomies collapse time, they fail to achieve what the "single-curve" studies 

accomplish: an analysis of the impact on the post-intervention temporal trajectory. These 

taxonomies succeed, however, where the single-curve approach does not: differentiating 

subgroups of individuals over follow-up.  

 

CTI study. The CTI analysis assessed impact using both approaches. Survival curves were 

constructed for experimental and control groups to elucidate differences in homelessness 

trends over follow-up. This period of 540 days was divided into 18 periods of 30 days (a 

“month”), and the probability of a major homeless episode (> 30 days) starting in a month for 

those housed at the beginning of that month was calculated. Cumulative survival probabilities 

were then calculated, one each for the experimental and control groups. The former declined 

from a 100% to an 80% chance of retaining housing at the eighteenth month; the latter from 

100% to 50%. The study focused on the finding that the difference between the two curves 

grew over time, in contrast to previous clinical trials of community mental health 

interventions where effects faded after the intervention period.  

 

The authors also created a taxonomy of homelessness to evaluate experimental/control 

differences. Four subgroups were arbitrarily defined for the entire sample based on the total 

number of nights individuals were homeless over follow-up: extended (> 54 nights 

homeless), intermediate (30-54 nights), transient (1-29 nights) and never (0 nights). The 

fourth subgroup was not part of the analysis. To test for impact, the distributions of 

experimentals and controls across subgroups were compared. The major reported finding was 

that extended homelessness for the experimental group was half that in the control group 

(21% v 40%); no differences were found for other subgroups.  

 

Taxonomic analysis showed individuals varied in their homelessness; survival analysis 

showed change over time in homelessness. Taken together, these suggest individuals differed 

in their temporal patterns of homelessness. By locating one curve for each group, survival 

analysis implies such differences are random, even as taxonomic analysis suggests they are 

not. By eliding time, taxonomic analysis leaves open the possibility that individuals did not 

change over time, even as survival analysis suggests they did. To address whether individuals 

differed in their patterns of homelessness, we need to simultaneously examine individual 

change over time and variation among individuals at each time point. 

 

Our approach. We use a technique that does both: latent growth class analysis (LCGA). This 

method allows us to identify subgroups of individuals who have similar post-intervention 

trajectories; who share, that is, similarities in timing, duration and sequencing of the outcome 

of interest over follow-up. It combines reasoning in the two approaches just reviewed. Like 
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the taxonomic approach (but in contrast to "single-curve" analyses), LCGA assumes that 

heterogeneity across individuals in the follow-up period is due to a mixture of distributions in 

the population representing different underlying subgroups, rather than that heterogeneity is 

random. Thus, as with the taxonomic approach, LCGA leaves us with latent classes of 

individuals sharing similar temporal qualities. Like single-curve analyses (but in contrast to 

taxonomy formation), LCGA uses information on individuals at each measured, post-

intervention time point to identify trajectory patterns and uses statistical reasoning rather than 

subjective judgments to arrive at results. Thus, as with survival, time series and growth curve 

analyses, LCGA leaves us with statistically-defined trajectories of behavior over the follow-

up period. In the end, we have, for both experimental and control groups, subgroups of 

individual trajectory patterns, thereby producing a more exact understanding of the nature of 

intervention impact than single-curve or taxonomy approaches. 

 

We carry out our study by re-analyzing data from a well-known evaluation of an intervention 

designed to prevent recurrent homelessness among mentally ill men.
3
 We chose this study 

because it (a) was well-designed and well-executed, with validated measures and tight 

program and study procedures; (b) followed up over a relatively long time period; and thus 

(c) able to employ analyses representing both single-curve and taxonomy approaches to 

assess impact. Findings from each approach can be usefully compared with results from a 

latent trajectory approach. In particular, that the initial findings were strong provides a more 

robust test for the ability of the latent trajectory approach to find further impacts. 

Additionally, critical time intervention is thought to be a potentially valuable new approach 

for enhancing continuity of care and reducing risk of homelessness and other adverse 

outcomes among mentally ill persons following discharge from shelters, hospitals and other 

institutions. The CTI model has now been applied and evaluated with various populations 

(e.g., persons being discharged from inpatient psychiatric treatment, homeless mothers with 

children leaving shelters, homeless veterans treated by specialized outreach teams), and was 

recently cited as a model program by the President’s New Freedom Commission on Mental 

Health.
19

 Demonstrating utility of trajectory analysis in this context, then, would be 

particularly helpful for furthering continuing research on an important policy initiative. 

 

 

Methods 
 

Study design. The CTI study was a random assignment study assessing the impact on 

recurrent homelessness of providing particular services when mentally ill homeless people 

are transitioning from shelters to housing in the community. The intervention consisted of 

help strengthening ties to services, family and friends and providing practical and emotional 

support after leaving the shelter. Each person was assigned a CTI worker to implement a plan 

transferring care from the shelter to the community and to work with the person in the 

community for nine months after shelter discharge. After this time, the experimental group 

received “usual services”, as did the control group throughout the 18 month post-shelter 

period. Usual services involved referrals to mental health and rehabilitation programs of 

generally high quality, as well as other referrals as needed (e.g., medical care; substance 

abuse treatment). 

 

The sample was male residents discharged to housing in the community from an on-site, New 

York City shelter psychiatric program. All subjects had severe mental illness, such as 

schizophrenia or other psychotic disorders. Ninety-six of the 102 discharged from the 

program over a two year period participated in the intervention and study. They were 

randomly assigned to receive either CTI or usual services after post-program housing 
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placement. After subjects left the shelter, data were collected at 30-day intervals over the 18 

month period through structured surveys by trained interviewers blind to experimental or 

control status of study participants. At initial data collection and at each 30-day assessment, 

housing data were collected, with high test-retest reliability (kappa = 0.93). The baseline 

interview collected demographic data (age, education, race/ethnicity), lifetime histories of 

mental health and alcohol and drug abuse, and information on current psychiatric diagnoses 

and symptoms. Table 1 shows baseline characteristics of the sample for experimental and 

control groups. There were no statistically significant differences between groups at p < .05.  

 

Outcome. Our outcome measure consists of trajectories of homelessness over the observation 

period, divided into 18 months of 30 days each. A person was considered homeless for an 

entire 30 day period if he resided in a shelter, on the street, or in any other public place for 

just one night during  that period. The intervention is thus held to a high standard: preventing 

a single night of homelessness in a given month. Less stringent criteria (< 5, < 10 and < 15 

nights homeless) produced essentially similar results, albeit with lower statistical power. This 

threshold approximates that used to construct the CTI taxonomy: at least one night homeless 

over follow-up placed an individual in one of the three homeless subgroups. It is a somewhat 

lower threshold than that used in the survival analysis: individuals were counted homeless for 

a 30-day period if they began that period homeless and were or remained homeless at least 30 

days.  

 

Analytic Approach.  We first re-analyzed CTI data to replicate descriptive statistics reported 

in the original article. We then analyzed the data using latent class growth modeling. This 

approach assumes a population is composed of a mixture of subgroups with distinctive 

patterns of behavior over time; in this case, patterns in sequence, duration and timing of 

homelessness. Membership in a subgroup, however, is unobserved; only the mixture of 

subgroups is observed. Consequently, it is not possible to directly estimate each subgroup’s 

size and pattern of exposure to homelessness over time. Rather, subgroup membership is 

inferred from the data. In latent class growth modeling, this heterogeneity is captured by an 

unobserved (latent) categorical variable, and observed outcomes at each time point—

homeless status each month—serve as indicators of the latent class variable. Since subgroup 

membership is unobserved, the proportion of cases in each class is unknown and must be 

estimated by the model, as must the conditional item probabilities for each class. These 

models and some applications are described by Muthén
1, 20-23

 and by Nagin
2, 24

 (for critiques, 

see Bauer & Curran).
25

  

 

Models were estimated by maximum likelihood using the EM algorithm as implemented by 

Mplus, version 3.11.
26

 We relied on several statistics for evaluating model fit. The Bayesian 

Information Criterion (BIC)
27

 rewards more parsimonious models (fewer latent classes) that 

more accurately reproduce the data and takes into account the number of parameters used in 

model estimation. Models having lower BIC values represent improvement over models with 

larger values. We also use the Lo-Mendell-Rubin likelihood ratio test (LMR LRT),
28

 which 

adjusts the conventional likelihood ratio test for k versus k+1 classes for violating regularity 

conditions to evaluate the proper number of classes.
29

 Entropy is a third model fit indicator, 

showing how well-separated are subgroups produced by the model.
30

 It takes a value between 

0.0 and 1.0; the closer to 1.0, the more distinct are the subgroups. 

 

We first assessed trajectories for controls,
20

 since they represent the counterfactual condition 

of having received only usual services rather than CTI. Results for experimentals were then 

modeled. In both cases, we compared models fitting two, three, four, and five trajectory 
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classes. Consistent with prior analysis of this randomized intervention, we report results not 

controlling for baseline covariates.  

 

 

Results 
 

Table 2 reports model fit statistics for controls and experimentals. Panel (a) shows a four 

class model provides the best fit for the control group. The reduction in BIC is substantial 

over the three-class model (50.6); the LMR LRT statistic suggests a significant improvement 

in fit (evaluated at .05 significance level); and the entropy value is excellent (.999). Adding a 

fifth class does not contribute appreciably to BIC and does not improve LMR LRT or 

entropy.  

 

Panel (b) of table 2 suggests three classes are sufficient to characterize trajectories present 

among experimentals. The reduction in BIC over the two class model is large (52.8), the 

LMR LRT is significant at .05, and entropy is very high (.998). While the LMR LRT also 

indicates good fit for four and five class solutions, these additional classes do not strongly 

reduce BIC and result in poorer entropy values. Taken together, these results suggest the 

experimental group is most parsimoniously characterized by three trajectory classes. Thus, 

strikingly, only three classes are needed to account for the heterogeneity within the CTI 

group, while four classes are needed for controls. 

 

For the selected models, figure 1 reports the size and nature of the classes for controls (top) 

and experimentals (bottom). It shows that three of the classes are similar in nature for both 

groups, but that class four among controls does not exist in the experimental group. While 

this trajectory does not contain many men, it is an important subgroup: those with a high 

probability of becoming homeless quickly after discharge and remaining chronically 

homeless throughout the observation period.  

 

Further, the largest trajectory class within both groups (class one) is those unlikely to be 

homeless at any point during the observation period. In particular, a larger portion of 

experimental (79.1%) than control (60.4%) subjects fall into this class, indicating that, for 

certain individuals, CTI had an immediate and enduring impact in preventing subsequent 

homelessness. 

 

Figure 1 also portrays a small class of experimental subjects (class two; 12.5%) that becomes 

increasingly homeless just after critical time services are ended at month nine. A similar 

pattern of increasing probability of homelessness exists for more controls (20.8%) but their 

movement into homelessness occurs earlier and is more linear than the J-shaped pattern found 

for the experimental group. 

 

Finally, both control and experimental groups contain small subgroups with an inverted U-

shaped pattern (class three). An increasing probability of homelessness is followed by a 

gradual decline reaching almost zero by the end of the observation period. The decline begins 

somewhat later among experimentals, however, and specifically around the time CTI services 

end.  
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Discussion 
 

Some of these results reiterate findings from the prior analysis. This suggests our findings are 

not simply artifacts of the method. But other findings go beyond the prior analysis, deepening 

our understanding of CTI by both conflicting with and expanding on prior CTI findings. 

 

Reiterative results. The prior and current analyses both indicate a large majority of men in the 

study had very low probabilities of becoming homeless over the observation period. That 

men receiving CTI were overrepresented in this subgroup suggests CTI was more effective 

than usual services in preventing enduring homelessness. 

 

Also like the prior analysis, the current findings suggest intervention effects may last beyond 

the nine months of active service provision. The current analysis, however, specifies two 

different ways that such success may be achieved: the excess of CTI subjects not becoming 

homeless at all and the absence of chronically homeless among experimentals. 

 

Deepening results. In their survival analysis, Susser et al. found a monotonic decline in the 

probability of housing retention among both experimentals and controls and an increasing 

difference between these groups in that probability. By contrast, our results suggest multiple 

subgroups exist within both experimental and control groups. 

 

Further, these subgroups are different from those suggested by the taxonomy analysis in 

Susser et al. Specifically, the CTI group does not have a class of persistently homeless and 

has a class whose increasing homelessness is reversed. Only among controls does 

homelessness become chronic. These differences suggest the program had stronger effects 

than initially found: CTI (a) keeps people out of chronic homelessness and (b) dramatically 

improves housing chances for a subgroup prone to chronic homelessness during the early 

months of the intervention. 

 

In addition, the subgroup withstanding homelessness only through continuing CTI services 

(class two) contrasts with the implication of the prior study that CTI effects persisted past the 

program period for all experimentals. Rather, this finding suggests these individuals may 

need a booster intervention,
31

 or greater continuity of service (for example, referral to long-

term follow-up by an assertive community treatment team). However, compared to the 

control group class which struggled against homelessness through usual services but failed 

earlier and at higher rates (class two), this CTI class showed the effectiveness of CTI for the 

subgroup of people that seem service dependent. 

 

 

Limitations 
 

The prior study identified several data limitations, which the reader can consult. Most 

important for our analysis is that the number of cases is relatively small. This is offset 

somewhat by the large number of follow-up periods and completeness of follow-up data. 

That the models fit well and that entropy values are high increases our confidence in the 

findings. Nevertheless, modest sample size has meant several subgroups contain few 

individuals. The results should thus be read as more demonstrating the utility of our analytic 

approach than definitively assessing CTI impact.  
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Our model evaluation should also be qualified. Reduction in BIC from k-class to k+1-class is 

the most commonly used index for assessing competing models, but no consensus exists on 

how large a reduction indicates significant change. Raftery
32

 suggests reductions of at least 10 

points, and BIC works quite well with small sample size. More research is needed, however, 

for a stronger consensus regarding BIC in this framework. Following Muthén, we also used 

LMR LRT to assess competing models, but the validity of testing non-nested models using 

this method is debated
33

 and more research is necessary to better understand its utility in this 

context.  

 

 

Implications 
 

The approach demonstrated in this paper is very suggestive for subsequent intervention 

research. We focus on two implications. One is that we can examine covariate effects on 

trajectory subgroup formation and on change in trajectory subgroup membership. This will 

allow researchers to develop and evaluate interventions better tailored to specific trajectory 

subgroups rather than assuming a universal intervention for a particular population. 

Alternatively, non-responding subgroups to a universal intervention could receive targeted or 

booster interventions to improve impacts, and, following TenHave et al.,
34

 randomized 

assignments could be incorporated at this stage to evaluate the impact of these added 

interventions. A second implication is the need to collect more precise temporal data. Our 

analysis makes clear the utility of knowing exactly when individuals enter and leave a 

particular state (such as homelessness) and not simply the number of times and durations of 

such states. Incorporating such data collection into intervention studies should become 

fundamental to this research. 
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Tables and Figures 
 

 

Table 1. Demographic Characteristics and Diagnoses of  

Mentally Ill Men in the Experimental and Control Groups 

 

 Experimentals  Controls 

Traits/ Diagnoses (n=48)  (n=48) 

 No.  %  No. % 

Age       

< 35 18 38  20 42 

> 35 30 62  28 58 

Race/ethnicity       

African American  38 79  33 69 

Other 10 21  15 31 

Education       

< High school  26 54  31 65 

≥ High school  22 46  17 35 

Lifetime homelessness       

≤ 1 yr 7 15  14 29 

> 1 yr 41 85  34 71 

Psychiatric hospitalizations       

< 5 28 58  33 69 

≥ 5 20 42  15 31 

Psychiatric diagnosis*       

Schizophrenia 32 67  33 69 

Other 16 33  15 31 

Cocaine dependence*       

No 21 44  30 62 

Yes 27 56  18 38 

Alcohol dependence*       

No 20 42  24 50 

Yes 28 58  24 50 

 
  Source: Susser et al.3  

  *Lifetime diagnosis 
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Table 2. Fit Indices for Latent Class 

Growth Analysis Models 

    

(a) Controls 
    

 Fit Indices 
       No. of   LMR LRT   

Classes BIC*  p-value** Entropy 

2 575.487 0.0001 1.000 

3 502.893 0.0326 0.999 

4 452.260 0.0330 0.999 

5 451.790 0.0632 0.995 

    

(b) Experimentals 
    

 Fit Indices 
       No. of   LMR LRT   

Classes BIC*  p-value** Entropy 

2 380.569 0.0665 0.992 

3 327.784 0.0003 0.998 

4 326.964 0.0444 0.971 

5 315.635 0.0170 0.960 
 

*   BIC: Bayesian Information Criteria 

** LMR LRT: Lo-Mendel-Rubin likelihood ratio test 
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Figure 1. Class Trajectories for Selected Models
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(b) Experimentals
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