2,953 research outputs found

    Resveratrol activates antioxidant protective mechanisms in cellular models of Alzheimer’s disease inflammation

    Get PDF
    Resveratrol is a natural phenolic compound with known benefits against neurodegeneration. We analyzed in vitro the protective mechanisms of resveratrol against the proinflammatory monomeric C-reactive protein (mCRP). mCRP increases the risk of AD after stroke and we previously demonstrated that intracerebral mCRP induces AD-like dementia in mice. Here, we used BV2 microglia treated with mCRP for 24 h in the presence or absence of resveratrol. Cells and conditioned media were collected for analysis. Lipopolysaccharide (LPS) has also been implicated in AD progression and so LPS was used as a resveratrol-sensitive reference agent. mCRP at the concentration of 50 µg/mL activated the nitric oxide pathway and the NLRP3 inflammasome pathway. Furthermore, mCRP induced cyclooxygenase-2 and the release of proinflammatory cytokines. Resveratrol effectively inhibited these changes and increased the expression of the antioxidant enzyme genes Cat and Sod2. As central mechanisms of defense, resveratrol activated the hub genes Sirt1 and Nfe2l2 and inhibited the nuclear translocation of the signal transducer NF-ĸB. Proinflammatory changes induced by mCRP in primary mixed glial cultures were also protected by resveratrol. This work provides a mechanistic insight into the protective benefits of resveratrol in preventing the risk of AD induced by proinflammatory agents

    The establishment of the infant intestinal microbiome is not affected by rotavirus vaccination

    Get PDF
    The microbial colonization of the intestine during the first months of life constitutes the most important process for the microbiota-induced host-homeostasis. Alterations in this process may entail a high-risk for disease in later life. However, the potential factors affecting this process in the infant are not well known. Moreover, the potential impact of orally administered vaccines upon the establishing microbiome remains unknown. Here we assessed the intestinal microbiome establishment process and evaluated the impact of rotavirus vaccination upon this process. Metagenomic, PCR-DGGE and faecal short chain fatty acids analyses were performed on faecal samples obtained from three infants before and after the administration of each dose of vaccine. We found a high inter-individual variability in the early life gut microbiota at microbial composition level, but a large similarity between the infants' microbiomes at functional level. Rotavirus vaccination did not show any major effects upon the infant gut microbiota. Thus, the individual microbiome establishment and development process seems to occur in a defined manner during the first stages of life and rotavirus vaccination appears to be inconsequential for this process.This work was funded by a CSIC intramural project (Ref. 201370E019) and Spanish Ministry of Economy and Competitiveness project AGL2013-43770R.Peer Reviewe

    Correlation-induced insulating topological phases at charge neutrality in twisted bilayer graphene

    Full text link
    Twisted bilayer graphene (TBG) provides a unique framework to elucidate the interplay between strong correlations and topological phenomena in two-dimensional systems. The existence of multiple electronic degrees of freedom -- charge, spin, and valley -- gives rise to a plethora of possible ordered states and instabilities. Identifying which of them are realized in the regime of strong correlations is fundamental to shed light on the nature of the superconducting and correlated insulating states observed in the TBG experiments. Here, we use unbiased, sign-problem-free quantum Monte Carlo simulations to solve an effective interacting lattice model for TBG at charge neutrality. Besides the usual cluster Hubbard-like repulsion, this model also contains an assisted hopping interaction that emerges due to the non-trivial topological properties of TBG. Such a non-local interaction fundamentally alters the phase diagram at charge neutrality, gapping the Dirac cones even for infinitesimally small interaction. As the interaction strength increases, a sequence of different correlated insulating phases emerge, including a quantum valley Hall state with topological edge states, an intervalley-coherent insulator, and a valence bond solid. The charge-neutrality correlated insulating phases discovered here provide the sought-after reference states needed for a comprehensive understanding of the insulating states at integer fillings and the proximate superconducting states of TBG.Comment: 15 pages, 9 figures, 2 table

    The potential of construction robotics to reduce airborne virus transmission in the construction industry in the UK and China

    Get PDF
    This paper aims to identify construction robotics' potential to reduce airborne virus transmission, review factors limiting the technology's adoption and highlight how similar barriers have been addressed in other industries. Construction robotics were identified and classified into 8 themes with 25 categories through a critical literature review. We undertook interviews with 4 construction contractors and conducted an online questionnaire with 32 experts from the UK (n=14) and China (n=18) who reviewed the robotic systems we identified and ranked the potential ability of each to reduce airborne virus transmission within the construction industry. The results of this study showed that construction robotics is not only beneficial to reduce airborne virus transmission, but may also help to reduce the spread of future contagious viruses. We found no significant difference (P>0.05) in practical usage and implementation barriers to construction robotics between the UK and China. Cost, training and limited awareness of robotic technologies were the main implementation barriers we identified in both countries. Both the UK and China may need to adopt strategies such as providing more financial support to small construction industries and skill training which are utilised successfully in other sectors to realise the potential of construction robotic technologies

    Engineering alternative butanol production platforms in heterologous bacteria

    Get PDF
    Alternative microbial hosts have been engineered as biocatalysts for butanol biosynthesis. The butanol synthetic pathway of Clostridium acetobutylicum was first re-constructed in Escherichia coli to establish a baseline for comparison to other hosts. Whereas polycistronic expression of the pathway genes resulted in the production of 34 mg/L butanol, individual expression of pathway genes elevated titers to 200 mg/L. Improved titers were achieved by co-expression of Saccharomyces cerevisiae formate dehydrogenase while overexpression of E. coli glyceraldehyde 3-phosphate dehydrogenase to elevate glycolytic flux improved titers to 580 mg/L. Pseudomonas putida and Bacillus subtilis were also explored as alternative production hosts. Polycistronic expression of butanol biosynthetic genes yielded butanol titers of 120 and 24 mg/L from P. putida and B. subtilis, respectively. Production in the obligate aerobe P. putida was dependent upon expression of bcd-etfAB. These results demonstrate the potential of engineering butanol biosynthesis in a variety of heterologous microorganisms, including those cultivated aerobically.Synthetic Biology Engineering Research CenterNational Science Foundation (Grant no. 0540879)Massachusetts Institute of Technology. Energy Initiative (Grant no. 6917278)Natural Sciences and Engineering Research Council of CanadaKorea Research Foundation (Grant
    • …
    corecore