81 research outputs found

    Attitudes of publics who are unwilling to donate DNA data for research

    Get PDF
    With the use of genetic technology, researchers have the potential to inform medical diagnoses and treatment in actionable ways. Accurate variant interpretation is a necessary condition for the utility of genetic technology to unfold. This relies on the ability to access large genomic datasets so that comparisons can be made between variants of interest. This can only be successful if DNA and medical data are donated by large numbers of people to 'research', including clinical, non-profit and for-profit research initiatives, in order to be accessed by scientists and clinicians worldwide. The objective of the 'Your DNA, Your Say' global survey is to explore public attitudes, values and opinions towards willingness to donate and concerns regarding the donation of one's personal data for use by others. Using a representative sample of 8967 English-speaking publics from the UK, the USA, Canada and Australia, we explore the characteristics of people who are unwilling (n = 1426) to donate their DNA and medical information, together with an exploration of their reasons. Understanding this perspective is important for making sense of the interaction between science and society. It also helps to focus engagement initiatives on the issues of concern to some publics.This work was supported by Wellcome grant [206194] paid to AM, LF, KIM, RM via Wellcome Genome Campus Society and Ethics Research Group, Connecting Science. We would like to thank the following people from GA4GH for their encouragement and infrastructure support: Peter Goodhand, Julia Wilson, Bartha Knoppers. This work was also supported by Global Alliance for Genomics and Health, with their funding delivered via Wellcome (GA4GH grant, with thanks to Audrey Duncansen). DV acknowledges the infrastructure funding received from the Victorian State Government through the Operational Infrastructure Support (OIS) Program

    Trust in genomic data sharing among members of the general public in the UK, USA, Canada and Australia

    Get PDF
    Abstract: Trust may be important in shaping public attitudes to genetics and intentions to participate in genomics research and big data initiatives. As such, we examined trust in data sharing among the general public. A cross-sectional online survey collected responses from representative publics in the USA, Canada, UK and Australia (n = 8967). Participants were most likely to trust their medical doctor and less likely to trust other entities named. Company researchers were least likely to be trusted. Low, Variable and High Trust classes were defined using latent class analysis. Members of the High Trust class were more likely to be under 50 years, male, with children, hold religious beliefs, have personal experience of genetics and be from the USA. They were most likely to be willing to donate their genomic and health data for clinical and research uses. The Low Trust class were less reassured than other respondents by laws preventing exploitation of donated information. Variation in trust, its relation to areas of concern about the use of genomic data and potential of legislation are considered. These findings have relevance for efforts to expand genomic medicine and data sharing beyond those with personal experience of genetics or research participants

    Speed breeding in growth chambers and glasshouses for crop breeding and model plant research

    Get PDF
    ‘Speed breeding’ (SB) shortens the breeding cycle and accelerates crop research through rapid generation advancement. SB can be carried out in numerous ways, one of which involves extending the duration of plants’ daily exposure to light, combined with early seed harvest, to cycle quickly from seed to seed, thereby reducing the generation times for some long-day (LD) or day-neutral crops. In this protocol, we present glasshouse and growth chamber–based SB approaches with supporting data from experimentation with several crops. We describe the conditions that promote the rapid growth of bread wheat, durum wheat, barley, oat, various Brassica species, chickpea, pea, grass pea, quinoa and Brachypodium distachyon. Points of flexibility within the protocols are highlighted, including how plant density can be increased to efficiently scale up plant numbers for single-seed descent (SSD). In addition, instructions are provided on how to perform SB on a small scale in a benchtop growth cabinet, enabling optimization of parameters at a low cost

    Speed breeding is a powerful tool to accelerate crop research and breeding

    Get PDF
    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand1. This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement

    Contrasted Effects of Diversity and Immigration on Ecological Insurance in Marine Bacterioplankton Communities

    Get PDF
    The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance) for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local “physiological insurance” may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations

    GENCODE: reference annotation for the human and mouse genomes in 2023.

    Get PDF
    GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org

    Members of the public in the USA, UK, Canada and Australia expressing genetic exceptionalism say they are more willing to donate genomic data

    Get PDF
    Funder: State Government of Victoria (Victorian Government); doi: https://doi.org/10.13039/501100004752Funder: Victorian State GovernmentAbstract: Public acceptance is critical for sharing of genomic data at scale. This paper examines how acceptance of data sharing pertains to the perceived similarities and differences between DNA and other forms of personal data. It explores the perceptions of representative publics from the USA, Canada, the UK and Australia (n = 8967) towards the donation of DNA and health data. Fifty-two percent of this public held ‘exceptionalist’ views about genetics (i.e., believed DNA is different or ‘special’ compared to other types of medical information). This group was more likely to be familiar with or have had personal experience with genomics and to perceive DNA information as having personal as well as clinical and scientific value. Those with personal experience with genetics and genetic exceptionalist views were nearly six times more likely to be willing to donate their anonymous DNA and medical information for research than other respondents. Perceived harms from re-identification did not appear to dissuade publics from being willing to participate in research. The interplay between exceptionalist views about genetics and the personal, scientific and clinical value attributed to data would be a valuable focus for future research
    corecore