247 research outputs found

    On the movements of the North Atlantic Subpolar Front in the preinstrumental past

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 1545-1571, doi:10.1175/JCLI-D-15-0509.1.Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.OM acknowledges support from the U.S. National Science Foundation. CW acknowledges support from the European Research Council ERC Grant ACCLIMATE 339108.2016-08-1

    Features of a Mediterranean Diet and Mental Health Outcomes in College Students

    Get PDF
    Up to 30% of college students are reported to suffer from depression or anxiety. Previous studies have produced correlations between nutritional variables and mental health outcomes in adults. Specifically, variables featured in the Mediterranean diet, including increased fiber, monounsaturated fat, omega-3 fatty acids, fruit and vegetable intake, and decreased added sugars have been associated with more favorable mental health outcomes. PURPOSE: This research was conducted to explore relationships between specific variables included in the Mediterranean diet and mental health symptoms in college students. METHODS: To collect data on diets, participants were given three-day diet records to record food and beverage intake. Participants completed an online survey including multiple standardized mental health questionnaires including the Beck Depression Inventory, Profile of Mood States (POMS), and Zung Anxiety Scale. The three-day diet records were inputted into Food Processor software to examine exact nutritional status. The mental health questionnaires were scored according to the test instructions. The data was then entered into SPSS for further statistical analysis. RESULTS: A statistically significant correlation was found between increased grams of omega-3 fatty acids and a decreased level of depression according to the Beck Depression Inventory –(r=-0.337, p=0.025). Another significant correlation was found between greater total grams of added sugar and lower depression on the Beck Depression Inventory (r=-0.328, p=0.030). There were no significant correlations found with depression, anxiety, or mood and other nutrition variables such as monounsaturated fat, fiber, and fruit and vegetable intake. CONCLUSION: Examining the correlations in this study to highlight specific aspects of the Mediterranean diet, high intake of omega-3 fatty acids and added sugars are the strongest predicting factors to favorable mental health status

    Identification of a Variable Number of Tandem Repeats Polymorphism and Characterization of LEF-1 Response Elements in the Promoter of the IDO1 Gene

    Get PDF
    Indoleamine 2,3-dioxygenase (IDO) catalyzes the first and rate-limiting step of the kynurenine pathway that is an important component of immunomodulatory and neuromodulatory processes. The IDO1 gene is highly inducible by IFN-γ and TNF-α through interaction with cis-acting regulatory elements of the promoter region. Accordingly, functional polymorphisms in the IDO1 promoter could partly explain the interindividual variability in IDO expression that has been previously documented.A PCR-sequencing strategy, applied to DNA samples from healthy Caucasians, allowed us to identify a VNTR polymorphism in the IDO1 promoter, which correlates significantly with serum tryptophan concentration, controlled partially by IDO activity, in female subjects, but not in males. Although this VNTR does not appear to affect basal or cytokine-induced promoter activity in gene reporter assays, it contains novel cis-acting elements. Three putative LEF-1 binding sites, one being located within the VNTR repeat motif, were predicted in silico and confirmed by chromatin immunoprecipitation. Overexpression of LEF-1 in luciferase assays confirmed an interaction between LEF-1 and the predicted transcription factor binding sites, and modification of the LEF-1 core sequence within the VNTR repeat motif, by site-directed mutagenesis, resulted in an increase in promoter activity.The identification of a VNTR in the IDO1 promoter revealed a cis-acting element interacting with the most downstream factor of the Wnt signaling pathway, suggesting novel mechanisms of regulation of IDO1 expression. These data offer new insights, and suggest further studies, into the role of IDO in various pathological conditions, particularly in cancer where IDO and the Wnt pathway are strongly dysregulated

    Genome-Wide Mapping of Human DNA Replication by Optical Replication Mapping Supports a Stochastic Model of Eukaryotic Replication Timing [preprint]

    Get PDF
    DNA replication is regulated by the location and timing of replication initiation. Therefore, much effort has been invested in identifying and analyzing the sites of human replication initiation. However, the heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation site utilization in metazoans has made mapping the location and timing of replication initiation in human cells difficult. A potential solution to the problem of human replication mapping is single-molecule analysis. However, current approaches do not provide the throughput required for genome-wide experiments. To address this challenge, we have developed Optical Replication Mapping (ORM), a high-throughput single-molecule approach to map newly replicated DNA, and used it to map early initiation events in human cells. The single-molecule nature of our data, and a total of more than 2000-fold coverage of the human genome on 27 million fibers averaging ~300 kb in length, allow us to identify initiation sites and their firing probability with high confidence. In particular, for the first time, we are able to measure genome-wide the absolute efficiency of human replication initiation. We find that the distribution of human replication initiation is consistent with inefficient, stochastic initiation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. In particular, we find sites of human replication initiation are not confined to well-defined replication origins but are instead distributed across broad initiation zones consisting of many initiation sites. Furthermore, we find no correlation of initiation events between neighboring initiation zones. Although most early initiation events occur in early-replicating regions of the genome, a significant number occur in late-replicating regions. The fact that initiation sites in typically late-replicating regions have some probability of firing in early S phase suggests that the major difference between initiation events in early and late replicating regions is their intrinsic probability of firing, as opposed to a qualitative difference in their firing-time distributions. Moreover, modeling of replication kinetics demonstrates that measuring the efficiency of initiation-zone firing in early S phase suffices to predict the average firing time of such initiation zones throughout S phase, further suggesting that the differences between the firing times of early and late initiation zones are quantitative, rather than qualitative. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans

    TCF7L2 rs7903146 variant does not associate with smallness for gestational age in the French population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In adults, the <it>TCF7L2 </it>rs7903146 T allele, commonly associated with type 2 diabetes (T2D), has been also associated with a lower body mass index (BMI) in T2D individuals and with a smaller waist circumference in subjects with impaired glucose tolerance.</p> <p>Methods</p> <p>The present association study aimed at analyzing the contribution of the rs7903146 SNP to smallness for gestational age (SGA) and metabolic profiles in subjects with SGA or appropriate for gestational age birth weight (AGA). Two groups of French Caucasian subjects were selected on birth data: SGA (birth weight < 10<sup>th </sup>percentile; n = 764), and AGA (25<sup>th </sup>< birth weight < 75<sup>th </sup>percentile; n = 627). Family-based association tests were also performed in 3,012 subjects from 628 SGA and AGA pedigrees.</p> <p>Results</p> <p>The rs7903146 genotypic distributions between AGA (30.7%) and SGA (29.0%) were not statistically different (allelic OR = 0.92 [0.78–1.09], p = 0.34). Family association-based studies did not show a distortion of T allele transmission in SGA subjects (p = 0.52). No significant effect of the T allele was detected on any of the metabolic parameters in the SGA group. However, in the AGA group, trends towards a lower insulin secretion (p = 0.03) and a higher fasting glycaemia (p = 0.002) were detected in carriers of the T allele.</p> <p>Conclusion</p> <p>The <it>TCF7L2 </it>rs7903146 variant neither increases the risk for SGA nor modulates birth weight and young adulthood glucose homeostasis in French Caucasian subjects born with SGA.</p

    European survey on national harmonization in clinical research

    Get PDF
    Background: Clinical trials remain key to the development of evidence-based medical practice. However, they are becoming increasingly complex, mainly in a multinational setting. To address these challenges, the European Union (EU) adopted the Clinical Trial Regulation EU No. 536/2014 (CTR). Once in force, the CTR will lead to more consistent rules and simplification of procedures for conducting clinical trials through-out the EU. Existing harmonization initiatives and “research infrastructures” for clinical trials may facilitate this process. This publication offers a snapshot of the current level of harmonization activities in academic clinical research in Europe. Methods: A survey was performed among the member and observer countries of the European Clinical Research Infrastructure Network (ECRIN), using a standardizedpublishersversionpublishe

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults

    Genetic Variant in HK1 Is Associated With a Proanemic State and A1C but Not Other Glycemic Control–Related Traits

    Get PDF
    OBJECTIVE A1C is widely considered the gold standard for monitoring effective blood glucose levels. Recently, a genome-wide association study reported an association between A1C and rs7072268 within HK1 (encoding hexokinase 1), which catalyzes the first step of glycolysis. HK1 deficiency in erythrocytes (red blood cells [RBCs]) causes severe nonspherocytic hemolytic anemia in both humans and mice. RESEARCH DESIGN AND METHODS The contribution of rs7072268 to A1C and the RBC-related traits was assessed in 6,953 nondiabetic European participants. We additionally analyzed the association with hematologic traits in 5,229 nondiabetic European individuals (in whom A1C was not measured) and 1,924 diabetic patients. Glucose control–related markers other than A1C were analyzed in 18,694 nondiabetic European individuals. A type 2 diabetes case-control study included 7,447 French diabetic patients. RESULTS Our study confirms a strong association between the rs7072268–T allele and increased A1C (β = 0.029%; P = 2.22 × 10−7). Surprisingly, despite adequate study power, rs7072268 showed no association with any other markers of glucose control (fasting- and 2-h post-OGTT–related parameters, n = 18,694). In contrast, rs7072268–T allele decreases hemoglobin levels (n = 13,416; β = −0.054 g/dl; P = 3.74 × 10−6) and hematocrit (n = 11,492; β = −0.13%; P = 2.26 × 10−4), suggesting a proanemic effect. The T allele also increases risk for anemia (836 cases; odds ratio 1.13; P = 0.018). CONCLUSIONS HK1 variation, although strongly associated with A1C, does not seem to be involved in blood glucose control. Since HK1 rs7072268 is associated with reduced hemoglobin levels and favors anemia, we propose that HK1 may influence A1C levels through its anemic effect or its effect on glucose metabolism in RBCs. These findings may have implications for type 2 diabetes diagnosis and clinical management because anemia is a frequent complication of the diabetes state

    G-allele of Intronic rs10830963 in MTNR1B Confers Increased Risk of Impaired Fasting Glycemia and Type 2 Diabetes Through an Impaired Glucose-Stimulated Insulin Release: Studies Involving 19,605 Europeans

    Get PDF
    OBJECTIVE Genome-wide association studies have identified several variants within the MTNR1B locus that are associated with fasting plasma glucose (FPG) and type 2 diabetes. We refined the association signal by direct genotyping and examined for associations of the variant displaying the most independent effect on FPG with isolated impaired fasting glycemia (i-IFG), isolated impaired glucose tolerance (i-IGT), type 2 diabetes, and measures of insulin release and peripheral and hepatic insulin sensitivity. RESEARCH DESIGN AND METHODS We examined European-descent participants in the Inter99 study (n = 5,553), in a sample of young healthy Danes (n = 372), in Danish twins (n = 77 elderly and n = 97 young), in additional Danish type 2 diabetic patients (n = 1,626) and control subjects (n = 505), in the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) study (n = 4,656), in the North Finland Birth Cohort 86 (n = 5,258), and in the Haguenau study (n = 1,461). RESULTS The MTNR1B intronic variant, rs10830963, carried most of the effect on FPG and showed the strongest association with FPG (combined P = 5.3 × 10−31) and type 2 diabetes. The rs10830963 G-allele increased the risk of i-IFG (odds ratio [OR] 1.64, P = 5.5 × 10−11) but not i-IGT. The G-allele was associated with a decreased insulin release after oral and intravenous glucose challenges (P < 0.01) but not after injection of tolbutamide. In elderly twins, the G-allele associated with hepatic insulin resistance (P = 0.017). CONCLUSIONS The G-allele of MTNR1B rs10830963 increases risk of type 2 diabetes through a state of i-IFG and not through i-IGT. The same allele associates with estimates of β-cell dysfunction and hepatic insulin resistance
    corecore