155 research outputs found

    Adiponectin, IGFBP-1 and -2 are independent predictors in forecasting prediabetes and type 2 diabetes

    Get PDF
    ObjectiveAdiponectin and insulin-like growth factor (IGF) binding proteins IGFBP-1 and IGFBP-2 are biomarkers of insulin sensitivity. IGFBP-1 reflects insulin sensitivity in the liver, adiponectin in adipose tissue and IGFBP-2 in both tissues. Here, we study the power of the biomarkers adiponectin, IGFBP-1, IGFBP-2, and also included IGF-I and IGF-II, in predicting prediabetes and type 2 diabetes (T2D) in men and women with normal oral glucose tolerance (NGT).DesignSubjects with NGT (35-56 years) recruited during 1992-1998 were re-investigated 8-10 years later. In a nested case control study, subjects progressing to prediabetes (133 women, 164 men) or to T2D (55 women, 98 men) were compared with age and sex matched NGT controls (200 women and 277 men).MethodsThe evaluation included questionnaires, health status, anthropometry, biochemistry and oral glucose tolerance test.ResultsAfter adjustment, the lowest quartile of adiponectin, IGFBP-1 and IGFBP-2 associated independently with future abnormal glucose tolerance (AGT) in both genders in multivariate analyses. High IGFs predicted weakly AGT in women. In women, low IGFBP-2 was the strongest predictor for prediabetes (OR:7.5), and low adiponectin for T2D (OR:29.4). In men, low IGFBP-1 was the strongest predictor for both prediabetes (OR:13.4) and T2D (OR:14.9). When adiponectin, IGFBP-1 and IGFBP-2 were combined, the ROC-AUC reached 0.87 for women and 0.79 for men, higher than for BMI alone.ConclusionDifferences were observed comparing adipocyte- and hepatocyte-derived biomarkers in forecasting AGT in NGT subjects. In women the strongest predictor for T2D was adiponectin and in men IGFBP-1, and for prediabetes IGFBP-2 in women and IGFBP-1 in men

    Study protocol for the SMART2D adaptive implementation trial: a cluster randomised trial comparing facility-only care with integrated facility and community care to improve type 2 diabetes outcomes in Uganda, South Africa and Sweden

    Get PDF
    INTRODUCTION Type 2 diabetes (T2D) is increasingly contributing to the global burden of disease. Health systems in most parts of the world are struggling to diagnose and manage T2D, especially in low-income and middle-income countries, and among disadvantaged populations in high-income countries. The aim of this study is to determine the added benefit of community interventions onto health facility interventions, towards glycaemic control among persons with diabetes, and towards reduction in plasma glucose among persons with prediabetes. METHODS AND ANALYSIS An adaptive implementation cluster randomised trial is being implemented in two rural districts in Uganda with three clusters per study arm, in an urban township in South Africa with one cluster per study arm, and in socially disadvantaged suburbs in Stockholm, Sweden with one cluster per study arm. Clusters are communities within the catchment areas of participating primary healthcare facilities. There are two study arms comprising a facility plus community interventions arm and a facility-only interventions arm. Uganda has a third arm comprising usual care. Intervention strategies focus on organisation of care, linkage between health facility and the community, and strengthening patient role in selfmanagement, community mobilisation and a supportive environment. Among T2D participants, the primary outcome is controlled plasma glucose; whereas among prediabetes participants the primary outcome is reduction in plasma glucose. ETHICS AND DISSEMINATION The study has received approval in Uganda from the Higher Degrees, Research and Ethics Committee of Makerere University School of Public Health and from the Uganda National Council for Science and Technology; in South Africa from the Biomedical Science Research Ethics Committee of the University of the Western Cape; and in Sweden from the Regional Ethical Board in Stockholm. Findings will be disseminated through peer-reviewed publications and scientific meetings. Trial registration number ISRCTN11913581; Pre-results

    Sex-different hepaticglycogen content and glucose output in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genes involved in hepatic metabolism have a sex-different expression in rodents. To test whether male and female rat livers differ regarding lipid and carbohydrate metabolism, whole-genome transcript profiles were generated and these were complemented by measurements of hepatic lipid and glycogen content, fatty acid (FA) oxidation rates and hepatic glucose output (HGO). The latter was determined in perfusates from <it>in situ </it>perfusion of male and female rat livers. These perfusates were also analysed using nuclear magnetic resonance (NMR) spectroscopy to identify putative sex-differences in other liver-derived metabolites. Effects of insulin were monitored by analysis of Akt-phosphorylation, gene expression and HGO after s.c. insulin injections.</p> <p>Results</p> <p>Out of approximately 3 500 gene products being detected in liver, 11% were significantly higher in females, and 11% were higher in males. Many transcripts for the production of triglycerides (TG), cholesterol and VLDL particles were female-predominant, whereas genes for FA oxidation, gluconeogenesis and glycogen synthesis were male-predominant. Sex-differences in mRNA levels related to metabolism were more pronounced during mild starvation (12 h fasting), as compared to the postabsorptive state (4 h fasting). No sex-differences were observed regarding hepatic TG content, FA oxidation rates or blood levels of ketone bodies or glucose. However, males had higher hepatic glycogen content and higher HGO, as well as higher ratios of insulin to glucagon levels. Based on NMR spectroscopy, liver-derived lactate was also higher in males. HGO was inhibited by insulin in parallel with increased phosphorylation of Akt, without any sex-differences in insulin sensitivity. However, the degree of Thr172-phosphorylated AMP kinase (AMPK) was higher in females, indicating a higher degree of AMPK-dependent actions.</p> <p>Conclusions</p> <p>Taken together, males had higher ratios of insulin to glucagon levels, higher levels of glycogen, lower degree of AMPK phosphorylation, higher expression of gluconeogenic genes and higher hepatic glucose output. Possibly these sex-differences reflect a higher ability for the healthy male rat liver to respond to increased energy demands.</p

    Antidiabetic Effect of Oral Borapetol B Compound, Isolated from the Plant Tinospora crispa

    Get PDF
    Aims. To evaluate the antidiabetic properties of borapetol B known as compound 1 (C1) isolated from Tinospora crispa in normoglycemic control Wistar (W) and spontaneously type 2 diabetic Goto-Kakizaki (GK) rats. Methods. The effect of C1 on blood glucose and plasma insulin was assessed by an oral glucose tolerance test. The effect of C1 on insulin secretion was assessed by batch incubation and perifusion experiments using isolated pancreatic islets. Results. An acute oral administration of C1 improved blood glucose levels in treated versus placebo groups with areas under glucose curves 0–120 min being 72±17 versus 344±10 mmol/L (P<0.001) and 492±63 versus 862±55 mmol/L (P<0.01) in W and GK rats, respectively. Plasma insulin levels were increased by 2-fold in treated W and GK rats versus placebo group at 30 min (P<0.05). C1 dose-dependently increased insulin secretion from W and GK isolated islets at 3.3 mM and 16.7 mM glucose. The perifusions of isolated islets indicated that C1 did not cause leakage of insulin by damaging islet beta cells (P<0.001). Conclusion. This study provides evidence that borapetol B (C1) has antidiabetic properties mainly due to its stimulation of insulin release

    Erythrocytes from patients with type 2 diabetes induce endothelial dysfunction via arginase I.

    Get PDF
    BACKGROUND: Cardiovascular complications are major clinical problems in type 2 diabetes mellitus (T2DM). The authors previously demonstrated a crucial role of red blood cells (RBCs) in control of cardiac function through arginase-dependent regulation of nitric oxide export from RBCs. There is alteration of RBC function, as well as an increase in arginase activity, in T2DM. OBJECTIVES: The authors hypothesized that RBCs from patients with T2DM induce endothelial dysfunction by up-regulation of arginase. METHODS: RBCs were isolated from patients with T2DM and age-matched healthy subjects and were incubated with rat aortas or human internal mammary arteries from nondiabetic patients for vascular reactivity and biochemical studies. RESULTS: Arginase activity and arginase I protein expression were elevated in RBCs from patients with T2DM (T2DM RBCs) through an effect induced by reactive oxygen species (ROS). Co-incubation of arterial segments with T2DM RBCs, but not RBCs from age-matched healthy subjects, significantly impaired endothelial function but not smooth muscle cell function in both healthy rat aortas and human internal mammary arteries. Endothelial dysfunction induced by T2DM RBCs was prevented by inhibition of arginase and ROS both at the RBC and vascular levels. T2DM RBCs induced increased vascular arginase I expression and activity through an ROS-dependent mechanism. CONCLUSIONS: This study demonstrates a novel mechanism behind endothelial dysfunction in T2DM that is induced by RBC arginase I and ROS. Targeting arginase I in RBCs may serve as a novel therapeutic tool for the treatment of endothelial dysfunction in T2DM

    Particulate matter air pollution components and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts of Air Pollution Effects (ESCAPE)

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.Introduction: Previous analysis from the large European multicentre ESCAPE study showed an association of ambient particulate matter <2.5 μm (PM2.5) air pollution exposure at residence with the incidence of gastric cancer. It is unclear which components of PM are most relevant for gastric and also upper aerodigestive tract (UADT) cancer and some of them may not be strongly correlated with PM mass. We evaluated the association between long-term exposure to elemental components of PM2.5 and PM10 and gastric and UADT cancer incidence in European adults. Methods: Baseline addresses of individuals were geocoded and exposure was assessed by land-use regression models for copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions; sulphur (S) indicating long-range transport; nickel (Ni) and vanadium (V) for mixed oil-burning and industry; silicon (Si) for crustal material and potassium (K) for biomass burning. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses. Results: Ten cohorts in six countries contributed data on 227,044 individuals with an average follow-up of 14.9 years with 633 incident cases of gastric cancer and 763 of UADT cancer. The combined hazard ratio (HR) for an increase of 200 ng/m3 of PM2.5_S was 1.92 (95%-confidence interval (95%-CI) 1.13;3.27) for gastric cancer, with no indication of heterogeneity between cohorts (I2 = 0%), and 1.63 (95%-CI 0.88;3.01) for PM2.5_Zn (I2 = 70%). For the other elements in PM2.5 and all elements in PM10 including PM10_S, non-significant HRs between 0.78 and 1.21 with mostly wide CIs were seen. No association was found between any of the elements and UADT cancer. The HR for PM2.5_S and gastric cancer was robust to adjustment for additional factors, including diet, and restriction to study participants with stable addresses over follow-up resulted in slightly higher effect estimates with a decrease in precision. In a two-pollutant model, the effect estimate for total PM2.5 decreased whereas that for PM2.5_S was robust. Conclusion: This large multicentre cohort study shows a robust association between gastric cancer and long-term exposure to PM2.5_S but not PM10_S, suggesting that S in PM2.5 or correlated air pollutants may contribute to the risk of gastric cancer.Peer reviewedFinal Accepted Versio

    Shikonin Increases Glucose Uptake in Skeletal Muscle Cells and Improves Plasma Glucose Levels in Diabetic Goto-Kakizaki Rats

    Get PDF
    Glucose is the most common substrate for energy metabolism. Despite the varying demands for glucose, the body needs to regulate its internal environment and maintain a constant and stable condition. Glucose homeostasis requires harmonized interaction between several tissues, achieving equilibrium between glucose output and uptake. In this thesis we aimed to investigate factors modulating glucose homeostasis in a rat model of type 2 diabetes, the Goto-Kakizaki (GK) rat. In addition, we investigated sex differences in hepatic carbohydrate and lipid metabolism in healthy rats. In Paper I, three-week but not three-day treatment with a Southeast Asian herb, Gynostemma pentaphyllum (GP), significantly reduced plasma glucose (PG) levels in GK rats. An intra-peritoneal glucose tolerance test (IPGTT) was significantly improved in GP-treated compared to placebo-treated group. In the GP treated rats, the glucose response in an intra-peritoneal pyruvate tolerance test was significantly lower, indicating decreased gluconeogenesis, and hepatic glucose output (HGO) was reduced. GP-treatment significantly reduced hepatic glycogen content, but not glycogen synthase activity. The study provides evidence that the GP extract exerted anti-diabetic effect in GK rats, reducing PG levels and HGO, suggesting that GP improves the hepatic insulin sensitivity by suppressing gluconeogenesis. In Paper II, shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increased glucose uptake in L6 myotubes, but did not phosphorylate Akt. Furthermore we found no evidence for the involvement of AMP activated protein kinase (AMPK) in shikonin induced glucose uptake. Shikonin increased the intracellular levels of calcium in these cells and stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myotubes. In GK rats treated with shikonin once daily for 4 days, PG levels were significantly decreased. In an insulin sensitivity test, the absolute PG levels were significantly lower in the shikonin-treated rats. These findings suggest that shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. In Paper III, GK and control Wistar rats were injected daily for up to 4 weeks with either a non-hematopoietic erythropoietin analog ARA290 or with placebo. PG levels in GK but not Wistar rats were significantly lower in ARA290-treated compared to placebo. After 2 and 4 weeks, the IPGTT was significantly improved in ARA290 treated GK rats. In insulin and pyruvate tolerance tests, glucose responses were similar in ARA290 and placebo groups. In isolated GK rat islets, glucose-stimulated insulin release was two-fold higher and islet intracellular calcium concentrations in response to several secretagogues were significantly higher in ARA290-treated than in placebo-treated GK rats. These findings indicate that treatment with ARA290 significantly improved glucose tolerance in diabetic GK rats, most likely due to improvement of insulin release. In Paper IV, sex differences in hepatic carbohydrate and lipid metabolism were characterized in healthy rats. No sex-differences were observed regarding hepatic triglyceride content, fatty acid oxidation rates or insulin sensitivity. Male rats had higher ratios of insulin to glucagon levels, increased hepatic glycogen content, a lower degree of AMPK phosphorylation, a higher rate of glucose production and higher expression levels of gluconeogenic genes, as compared to female rats. A sex-dependent response to mild starvation was observed with males being more sensitive. In conclusion, sex-differences reflect a higher capacity of the healthy male rat liver to respond to increased energy demands. Key words: glucose homeostasis, type 2 diabetes, GK rats, L6 myotubes, hepatic glucose output, insulin sensitivity, sex differences
    corecore