2,956 research outputs found

    Lower rate of genomic variation identified in the trans-membrane domain of monoamine sub-class of Human G-Protein Coupled Receptors: The Human GPCR-DB Database

    Get PDF
    BACKGROUND: We have surveyed, compiled and annotated nucleotide variations in 338 human 7-transmembrane receptors (G-protein coupled receptors). In a sample of 32 chromosomes from a Nordic population, we attempted to determine the allele frequencies of 80 non-synonymous SNPs, and found 20 novel polymorphic markers. GPCR receptors of physiological and clinical importance were prioritized for statistical analysis. Natural variation and rare mutation information were merged and presented online in the Human GPCR-DB database . RESULTS: The average number of SNPs per 1000 bases of exonic sequence was found to be twice the average number of SNPs per Kilobase of intronic regions (2.2 versus 1.0). Of the 338 genes, 111 were single exon genes, that is, were intronless. The average number of exonic-SNPs per single-exon gene was 3.5 (n = 395) while that for multi-exon genes was 0.8 (n = 1176). The average number of variations within the different protein domain (N-terminus, internal- and external-loops, trans-membrane region, C-terminus) indicates a lower rate of variation in the trans-membrane region of Monoamine GPCRs, as compared to Chemokine- and Peptide-receptor sub-classes of GPCRs. CONCLUSIONS: Single-exon GPCRs on average have approximately three times the number of SNPs as compared to GPCRs with introns. Among various functional classes of GPCRs, Monoamine GPRCs have lower number of natural variations within the trans-membrane domain indicating evolutionary selection against non-synonymous changes within the membrane-localizing domain of this sub-class of GPCRs

    Prenatal alcohol exposure and facial shape of one-year old children: no amount of alcohol is without consequence

    Get PDF
    Background: Children with Fetal Alcohol Spectrum Disorder (FASD) can have a characteristic facial appearance in addition to neurodevelopmental impairment. We do not know if there is a gradient of effects on the face of children with prenatal alcohol exposure (PAE). Method: This is an analysis of 3D craniofacial images of 415 one year-old Caucasian children with detailed, prospectively collected PAE data. Analysis involved objective, holistic craniofacial phenotyping applying partial least-square regression to dense-surface models of the facial images. Results: We saw a significant association between craniofacial shape and PAE, whether exposure occurred only in trimester one, or throughout pregnancy. Regions of difference (p < 0.05) were concentrated around the mid-face, nose, lips and eyes. Directional visualisation showed these corresponded to general recession of the midface and superior displacement of the nose, especially the tip of the nose, indicating shortening of the nose and upturning of the nose tip. Significant differences existed between groups with no exposure and groups with low exposure in trimester one (forehead), moderate/high exposure in trimester one (eyes, midface, chin, parietal region) and binge level exposure in trimester one (chin). Conclusion: PAE, even at low levels, can influence craniofacial development. The observed differences were subtle, but are typical of dysmorphic features often seen in children with FASD. Although facial development is complex and each person's face is unique, it is sensitive to some influences at critical stages of development. Our study shows that alcohol contributes to how the face is formed in the womb

    Metadata Framework to Support Deployment of Digital Health Technologies in Clinical Trials in Parkinson’s Disease

    Get PDF
    Sensor data from digital health technologies (DHTs) used in clinical trials provides a valuable source of information, because of the possibility to combine datasets from different studies, to combine it with other data types, and to reuse it multiple times for various purposes. To date, there exist no standards for capturing or storing DHT biosensor data applicable across modalities and disease areas, and which can also capture the clinical trial and environment-specific aspects, so-called metadata. In this perspectives paper, we propose a metadata framework that divides the DHT metadata into metadata that is independent of the therapeutic area or clinical trial design (concept of interest and context of use), and metadata that is dependent on these factors. We demonstrate how this framework can be applied to data collected with different types of DHTs deployed in the WATCH-PD clinical study of Parkinson’s disease. This framework provides a means to pre-specify and therefore standardize aspects of the use of DHTs, promoting comparability of DHTs across future studies

    M & L Jaargang 1/2

    Get PDF
    Edgard Goedleven - EditoriaalFrans Baudouin en Nora De Poorter Het gerestaureerde Kolveniershof en het Rubenianum te Antwerpen. [The Antwerp Kolveniershof and Rubenianum restored.]Herman Stynen Het huis Guiette (1962) van architect Le Corbusier te Antwerpen. [The Guiette house (1962) by Le Corbusier in Antwerp.]Jos Vandenbreeden Het Vlaams Huis te Watermaal-Bosvoorde, een ontwerp van Albert Charle (1821-1889). [The Flemish House at Watermaal-Bosvoorde (Brussels), a design by Albert Charle (1821-1889).]Marjan Buyle en Leon Smets De Begijnhofkerk te Sint-Truiden en haar muur- en pijlerschilderingen. [The beguinage church of Sint-Truiden and its wall and column paintings.]Wim Claes en Roger Deneef Het plateau van Overijse. [The Plateau of Overijse.]Anthony Demey Het bouwkundig erfgoed van het arrondissement Sint-Niklaas in vogelvlucht. [Architectural heritage in the Sint-Niklaas arrondissement: a birds eye view.]Lut Pans Sociale stadsvernieuwing van naderbij bekeken. [Social aspects of urban renovation: a close view.]Toespraak van Gemeenschapsminister K. PomaM&L Binnenkran

    In Vitro-Produced Equine Blastocysts Exhibit Greater Dispersal and Intermingling of Inner Cell Mass Cells than In Vivo Embryos

    Get PDF
    In vitro production (IVP) of equine embryos is increasingly popular in clinical practice but suffers from higher incidences of early embryonic loss and monozygotic twin development than transfer of in vivo derived (IVD) embryos. Early embryo development is classically characterized by two cell fate decisions: (1) first, trophectoderm (TE) cells differentiate from inner cell mass (ICM); (2) second, the ICM segregates into epiblast (EPI) and primitive endoderm (PE). This study examined the influence of embryo type (IVD versus IVP), developmental stage or speed, and culture environment (in vitro versus in vivo) on the expression of the cell lineage markers, CDX-2 (TE), SOX-2 (EPI) and GATA-6 (PE). The numbers and distribution of cells expressing the three lineage markers were evaluated in day 7 IVD early blastocysts ( n = 3) and blastocysts ( n = 3), and in IVP embryos first identified as blastocysts after 7 (fast development, n = 5) or 9 (slow development, n = 9) days. Furthermore, day 7 IVP blastocysts were examined after additional culture for 2 days either in vitro ( n = 5) or in vivo (after transfer into recipient mares, n = 3). In IVD early blastocysts, SOX-2 positive cells were encircled by GATA-6 positive cells in the ICM, with SOX-2 co-expression in some presumed PE cells. In IVD blastocysts, SOX-2 expression was exclusive to the compacted presumptive EPI, while GATA-6 and CDX-2 expression were consistent with PE and TE specification, respectively. In IVP blastocysts, SOX-2 and GATA-6 positive cells were intermingled and relatively dispersed, and co-expression of SOX-2 or GATA-6 was evident in some CDX-2 positive TE cells. IVP blastocysts had lower TE and total cell numbers than IVD blastocysts and displayed larger mean inter-EPI cell distances; these features were more pronounced in slower-developing IVP blastocysts. Transferring IVP blastocysts into recipient mares led to the compaction of SOX-2 positive cells into a presumptive EPI, whereas extended in vitro culture did not. In conclusion, IVP equine embryos have a poorly compacted ICM with intermingled EPI and PE cells; features accentuated in slowly developing embryos but remedied by transfer to a recipient mare

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A&gt;T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Lipoprotein‐Associated Phospholipase A2 Activity Is a Marker of Risk But Not a Useful Target for Treatment in Patients With Stable Coronary Heart Disease

    Get PDF
    Background: We evaluated lipoprotein‐associated phospholipase A2 (Lp‐PLA2) activity in patients with stable coronary heart disease before and during treatment with darapladib, a selective Lp‐PLA2 inhibitor, in relation to outcomes and the effects of darapladib in the STABILITY trial. Methods and Results: Plasma Lp‐PLA2 activity was determined at baseline (n=14 500); at 1 month (n=13 709); serially (n=100) at 3, 6, and 18 months; and at the end of treatment. Adjusted Cox regression models evaluated associations between Lp‐PLA2 activity levels and outcomes. At baseline, the median Lp‐PLA2 level was 172.4 ÎŒmol/min per liter (interquartile range 143.1–204.2 ÎŒmol/min per liter). Comparing the highest and lowest Lp‐PLA2 quartile groups, the hazard ratios were 1.50 (95% CI 1.23–1.82) for the primary composite end point (cardiovascular death, myocardial infarction, or stroke), 1.95 (95% CI 1.29–2.93) for hospitalization for heart failure, 1.42 (1.07–1.89) for cardiovascular death, and 1.37 (1.03–1.81) for myocardial infarction after adjustment for baseline characteristics, standard laboratory variables, and other prognostic biomarkers. Treatment with darapladib led to a ≈65% persistent reduction in median Lp‐PLA2 activity. There were no associations between on‐treatment Lp‐PLA2 activity or changes of Lp‐PLA2 activity and outcomes, and there were no significant interactions between baseline and on‐treatment Lp‐PLA2 activity or changes in Lp‐PLA2 activity levels and the effects of darapladib on outcomes. Conclusions: Although high Lp‐PLA2 activity was associated with increased risk of cardiovascular events, pharmacological lowering of Lp‐PLA2 activity by ≈65% did not significantly reduce cardiovascular events in patients with stable coronary heart disease, regardless of the baseline level or the magnitude of change of Lp‐PLA2 activity
    • 

    corecore