13 research outputs found

    Biodistribution of intravitreal lenadogene nolparvovec gene therapy in nonhuman primates.

    Get PDF
    Lenadogene nolparvovec (Lumevoq) gene therapy was developed to treat Leber hereditary optic neuropathy (LHON) caused by the m.11778G > A in MT-ND4 that affects complex I of the mitochondrial respiratory chain. Lenadogene nolparvovec is a replication-defective, single-stranded DNA recombinant adeno-associated virus vector 2 serotype 2, containing a codon-optimized complementary DNA encoding the human wild-type MT-ND4 subunit protein. Lenadogene nolparvovec was administered by unilateral intravitreal injection in MT-ND4 LHON patients in two randomized, double-masked, and sham-controlled phase III clinical trials (REVERSE and RESCUE), resulting in bilateral improvement of visual acuity. These and other earlier results suggest that lenadogene nolparvovec may travel from the treated to the untreated eye. To investigate this possibility further, lenadogene nolparvovec was unilaterally injected into the vitreous body of the right eye of healthy, nonhuman primates. Viral vector DNA was quantifiable in all eye and optic nerve tissues of the injected eye and was detected at lower levels in some tissues of the contralateral, noninjected eye, and optic projections, at 3 and 6 months after injection. The results suggest that lenadogene nolparvovec transfers from the injected to the noninjected eye, thus providing a potential explanation for the bilateral improvement of visual function observed in the LHON patients

    Neonatal estrogen exposure in the rat : effects on metabolism, ovarian development and reproductive function

    Get PDF
    L'ovaire est au cƓur de la physiologie de la reproduction fĂ©minine. Il est Ă  la fois Ă  l'origine des ovocytes nĂ©cessaires Ă  la fĂ©condation et acteur des rĂ©gulations endocrines du systĂšme reproducteur. Les ovocytes de l'ovaire fƓtal sont groupĂ©s en amas bordĂ©s de cellules somatiques et d'une membrane basale, formant les cordons ovariens. Ces cordons ovariens se fragmentent pour former les follicules ovariens: un ovocyte bordĂ© de cellules somatiques et d'une membrane basale. Cette fragmentation se dĂ©roule sur une courte pĂ©riode (/in utero/ chez la femme et juste aprĂšs la naissance chez les rongeurs) et fait intervenir une vague de mort cellulaire programmĂ©e touchant les ovocytes pendant leur mĂ©iose et un remodelage de la membrane basale. La formation des follicules est une pĂ©riode cruciale du dĂ©veloppement ovarien puisque le stock de follicules formĂ©s Ă  l'issue de ce processus est non renouvelable. Son altĂ©ration peut donc ĂȘtre Ă  l'origine de troubles de la fonction de reproduction chez le futur adulte. Il existe une fragile homĂ©ostasie ƓstrogĂ©nique en place au moment de la formation folliculaire: chez la femme, l'ovaire se dĂ©veloppe /in utero/, sous l'influence des ƓstrogĂšnes circulants maternels et la production ovarienne fƓtale. Chez les rongeurs, les follicules se forment lors de la levĂ©e de l'imprĂ©gnation hormonale maternelle au moment de la naissance. Nous avons souhaitĂ© comprendre comment le 17b-Ɠstradiol (E2), ƓstrogĂšne endogĂšne, pouvait contribuer Ă  la mise en place des follicules. Pour cela, des rattes Sprague-Dawley ont Ă©tĂ© traitĂ©es pendant la pĂ©riode de formation des follicules avec de l'E2 Ă  diffĂ©rentes doses entre 0.01 et 10 ”g/jour. Nos travaux dĂ©montrent que le traitement de rattes par des ƓstrogĂšnes entre leur naissance et 3 jours induit une rĂ©duction dose-dĂ©pendante de leur nombre d'ovocytes. Bien que le traitement entrave le dĂ©veloppement normal du systĂšme de dĂ©toxication hĂ©patique et ovarien, l'animal est capable d'accroĂźtre ses capacitĂ©s d'Ă©limination des ƓstrogĂšnes. Ces capacitĂ©s sont toutefois insuffisantes pour bloquer les effets du traitement. Quelle que soit la dose d'E2 utilisĂ©e (0.1 ou 10 ”g/jour), la pubertĂ© est plus prĂ©coce chez les femelles exposĂ©es mais toutes sont fertiles, au moins transitoirement. Cependant le traitement induit une dĂ©gradation rapide des capacitĂ©s reproductives. L'E2 modifie la dynamique folliculaire chez l'adulte, longtemps aprĂšs l'arrĂȘt du traitement. Si une forte dose d'E2 rĂ©duit la survie des ovocytes lors de la formation des follicules et conduit Ă  une infertilitĂ© secondaire due Ă  un dysfonctionnement gĂ©nĂ©ral du tractus reproducteur, une dose faible n'affecte pas la survie des ovocytes Ă  court terme mais conduit Ă  une sĂ©nescence reproductive prĂ©coce vraisemblablement d'origine ovarienne. L'origine de ces troubles pourrait rĂ©sider dans les effets prĂ©coces de l'exposition Ă  E2 : cette molĂ©cule altĂšre le transcriptome ovarien et induit de nombreuses lĂ©sions de l'ADN des cellules ovariennes.The ovary is not solely the unique source of oocytes necessary for fertilization but also a crucial conductor of endocrine regulations of the reproductive system. In the fetal ovary, oocytes grouped in clusters are surrounded by somatic pre-granulosa cells, altogether delineated by a basement membrane and constituting ovarian cords. The formation of the definitive ovarian functional units requires their fragmentation into follicles formed by a single oocyte surrounded by granulosa cells and delineated by a basement membrane. This partitioning occurs within a tiny period and is dependent on the correct timing of the meiotic process, on an apoptotic wave that specifically targets oocytes and the remodelling of the basement membrane. Follicle formation is a crucial event of ovarian development because the follicle stock formed at the end of this process is non-renewable. Therefore, any disturbance of this process can lead to reproductive abnormalities in adulthood. Recent data on endocrine disruptors displaying estrogenic activity have involved the fragile estrogenic homeostasis in the process. We aimed at better understanding how the endogen estrogen 17b-estradiol (E2) contributes to follicle formation. To assess it, Sprague-Dawley rats were treated with E2 at different doses during follicle formation, /i.e./ in the 3 days following birth. We show that although this treatment impairs the development of the hepatic and ovarian detoxification systems, the female neonate is able to increase its estrogen clearance capabilities. Nevertheless, E2 treatment within this critical period triggers a dose-dependent decrease of oocyte number per ovary. Regardless of the E2 dose, puberty is advanced. All treated females are at least transiently fertile, yet these reproductive capabilities rapidly decline. A high (10 ”g/day) dose of E2 leads to a secondary infertility characterized by anovulation that probably result from a dysfunction of the whole reproductive tract. By contrast, a lower (0.1 ”g/day) dose of E2, that does not significantly modify neonatal oocyte survival, leads to a progressive reproductive senescence likely due to ovarian failure. Long-term troubles may originate from precocious E2 impact on the ovary since it disturbs ovarian transcriptome and produces many lesions on ovarian cell DNA

    Exposition nĂ©onatale aux ƓstrogĂšnes : effets sur leur mĂ©tabolisme, le dĂ©veloppement ovarien et la fonction de reproduction chez la ratte

    No full text
    The ovary is not solely the unique source of oocytes necessary for fertilization but also a crucial conductor of endocrine regulations of the reproductive system. In the fetal ovary, oocytes grouped in clusters are surrounded by somatic pre-granulosa cells, altogether delineated by a basement membrane and constituting ovarian cords. The formation of the definitive ovarian functional units requires their fragmentation into follicles formed by a single oocyte surrounded by granulosa cells and delineated by a basement membrane. This partitioning occurs within a tiny period and is dependent on the correct timing of the meiotic process, on an apoptotic wave that specifically targets oocytes and the remodelling of the basement membrane. Follicle formation is a crucial event of ovarian development because the follicle stock formed at the end of this process is non-renewable. Therefore, any disturbance of this process can lead to reproductive abnormalities in adulthood. Recent data on endocrine disruptors displaying estrogenic activity have involved the fragile estrogenic homeostasis in the process. We aimed at better understanding how the endogen estrogen 17b-estradiol (E2) contributes to follicle formation. To assess it, Sprague-Dawley rats were treated with E2 at different doses during follicle formation, /i.e./ in the 3 days following birth. We show that although this treatment impairs the development of the hepatic and ovarian detoxification systems, the female neonate is able to increase its estrogen clearance capabilities. Nevertheless, E2 treatment within this critical period triggers a dose-dependent decrease of oocyte number per ovary. Regardless of the E2 dose, puberty is advanced. All treated females are at least transiently fertile, yet these reproductive capabilities rapidly decline. A high (10 ”g/day) dose of E2 leads to a secondary infertility characterized by anovulation that probably result from a dysfunction of the whole reproductive tract. By contrast, a lower (0.1 ”g/day) dose of E2, that does not significantly modify neonatal oocyte survival, leads to a progressive reproductive senescence likely due to ovarian failure. Long-term troubles may originate from precocious E2 impact on the ovary since it disturbs ovarian transcriptome and produces many lesions on ovarian cell DNA.L'ovaire est au cƓur de la physiologie de la reproduction fĂ©minine. Il est Ă  la fois Ă  l'origine des ovocytes nĂ©cessaires Ă  la fĂ©condation et acteur des rĂ©gulations endocrines du systĂšme reproducteur. Les ovocytes de l'ovaire fƓtal sont groupĂ©s en amas bordĂ©s de cellules somatiques et d'une membrane basale, formant les cordons ovariens. Ces cordons ovariens se fragmentent pour former les follicules ovariens: un ovocyte bordĂ© de cellules somatiques et d'une membrane basale. Cette fragmentation se dĂ©roule sur une courte pĂ©riode (/in utero/ chez la femme et juste aprĂšs la naissance chez les rongeurs) et fait intervenir une vague de mort cellulaire programmĂ©e touchant les ovocytes pendant leur mĂ©iose et un remodelage de la membrane basale. La formation des follicules est une pĂ©riode cruciale du dĂ©veloppement ovarien puisque le stock de follicules formĂ©s Ă  l'issue de ce processus est non renouvelable. Son altĂ©ration peut donc ĂȘtre Ă  l'origine de troubles de la fonction de reproduction chez le futur adulte. Il existe une fragile homĂ©ostasie ƓstrogĂ©nique en place au moment de la formation folliculaire: chez la femme, l'ovaire se dĂ©veloppe /in utero/, sous l'influence des ƓstrogĂšnes circulants maternels et la production ovarienne fƓtale. Chez les rongeurs, les follicules se forment lors de la levĂ©e de l'imprĂ©gnation hormonale maternelle au moment de la naissance. Nous avons souhaitĂ© comprendre comment le 17b-Ɠstradiol (E2), ƓstrogĂšne endogĂšne, pouvait contribuer Ă  la mise en place des follicules. Pour cela, des rattes Sprague-Dawley ont Ă©tĂ© traitĂ©es pendant la pĂ©riode de formation des follicules avec de l'E2 Ă  diffĂ©rentes doses entre 0.01 et 10 ”g/jour. Nos travaux dĂ©montrent que le traitement de rattes par des ƓstrogĂšnes entre leur naissance et 3 jours induit une rĂ©duction dose-dĂ©pendante de leur nombre d'ovocytes. Bien que le traitement entrave le dĂ©veloppement normal du systĂšme de dĂ©toxication hĂ©patique et ovarien, l'animal est capable d'accroĂźtre ses capacitĂ©s d'Ă©limination des ƓstrogĂšnes. Ces capacitĂ©s sont toutefois insuffisantes pour bloquer les effets du traitement. Quelle que soit la dose d'E2 utilisĂ©e (0.1 ou 10 ”g/jour), la pubertĂ© est plus prĂ©coce chez les femelles exposĂ©es mais toutes sont fertiles, au moins transitoirement. Cependant le traitement induit une dĂ©gradation rapide des capacitĂ©s reproductives. L'E2 modifie la dynamique folliculaire chez l'adulte, longtemps aprĂšs l'arrĂȘt du traitement. Si une forte dose d'E2 rĂ©duit la survie des ovocytes lors de la formation des follicules et conduit Ă  une infertilitĂ© secondaire due Ă  un dysfonctionnement gĂ©nĂ©ral du tractus reproducteur, une dose faible n'affecte pas la survie des ovocytes Ă  court terme mais conduit Ă  une sĂ©nescence reproductive prĂ©coce vraisemblablement d'origine ovarienne. L'origine de ces troubles pourrait rĂ©sider dans les effets prĂ©coces de l'exposition Ă  E2 : cette molĂ©cule altĂšre le transcriptome ovarien et induit de nombreuses lĂ©sions de l'ADN des cellules ovariennes

    Neonatal estrogen exposure in the rat : effects on metabolism, ovarian development and reproductive function

    No full text
    L'ovaire est au cƓur de la physiologie de la reproduction fĂ©minine. Il est Ă  la fois Ă  l'origine des ovocytes nĂ©cessaires Ă  la fĂ©condation et acteur des rĂ©gulations endocrines du systĂšme reproducteur. Les ovocytes de l'ovaire fƓtal sont groupĂ©s en amas bordĂ©s de cellules somatiques et d'une membrane basale, formant les cordons ovariens. Ces cordons ovariens se fragmentent pour former les follicules ovariens: un ovocyte bordĂ© de cellules somatiques et d'une membrane basale. Cette fragmentation se dĂ©roule sur une courte pĂ©riode (/in utero/ chez la femme et juste aprĂšs la naissance chez les rongeurs) et fait intervenir une vague de mort cellulaire programmĂ©e touchant les ovocytes pendant leur mĂ©iose et un remodelage de la membrane basale. La formation des follicules est une pĂ©riode cruciale du dĂ©veloppement ovarien puisque le stock de follicules formĂ©s Ă  l'issue de ce processus est non renouvelable. Son altĂ©ration peut donc ĂȘtre Ă  l'origine de troubles de la fonction de reproduction chez le futur adulte. Il existe une fragile homĂ©ostasie ƓstrogĂ©nique en place au moment de la formation folliculaire: chez la femme, l'ovaire se dĂ©veloppe /in utero/, sous l'influence des ƓstrogĂšnes circulants maternels et la production ovarienne fƓtale. Chez les rongeurs, les follicules se forment lors de la levĂ©e de l'imprĂ©gnation hormonale maternelle au moment de la naissance. Nous avons souhaitĂ© comprendre comment le 17b-Ɠstradiol (E2), ƓstrogĂšne endogĂšne, pouvait contribuer Ă  la mise en place des follicules. Pour cela, des rattes Sprague-Dawley ont Ă©tĂ© traitĂ©es pendant la pĂ©riode de formation des follicules avec de l'E2 Ă  diffĂ©rentes doses entre 0.01 et 10 ”g/jour. Nos travaux dĂ©montrent que le traitement de rattes par des ƓstrogĂšnes entre leur naissance et 3 jours induit une rĂ©duction dose-dĂ©pendante de leur nombre d'ovocytes. Bien que le traitement entrave le dĂ©veloppement normal du systĂšme de dĂ©toxication hĂ©patique et ovarien, l'animal est capable d'accroĂźtre ses capacitĂ©s d'Ă©limination des ƓstrogĂšnes. Ces capacitĂ©s sont toutefois insuffisantes pour bloquer les effets du traitement. Quelle que soit la dose d'E2 utilisĂ©e (0.1 ou 10 ”g/jour), la pubertĂ© est plus prĂ©coce chez les femelles exposĂ©es mais toutes sont fertiles, au moins transitoirement. Cependant le traitement induit une dĂ©gradation rapide des capacitĂ©s reproductives. L'E2 modifie la dynamique folliculaire chez l'adulte, longtemps aprĂšs l'arrĂȘt du traitement. Si une forte dose d'E2 rĂ©duit la survie des ovocytes lors de la formation des follicules et conduit Ă  une infertilitĂ© secondaire due Ă  un dysfonctionnement gĂ©nĂ©ral du tractus reproducteur, une dose faible n'affecte pas la survie des ovocytes Ă  court terme mais conduit Ă  une sĂ©nescence reproductive prĂ©coce vraisemblablement d'origine ovarienne. L'origine de ces troubles pourrait rĂ©sider dans les effets prĂ©coces de l'exposition Ă  E2 : cette molĂ©cule altĂšre le transcriptome ovarien et induit de nombreuses lĂ©sions de l'ADN des cellules ovariennes.The ovary is not solely the unique source of oocytes necessary for fertilization but also a crucial conductor of endocrine regulations of the reproductive system. In the fetal ovary, oocytes grouped in clusters are surrounded by somatic pre-granulosa cells, altogether delineated by a basement membrane and constituting ovarian cords. The formation of the definitive ovarian functional units requires their fragmentation into follicles formed by a single oocyte surrounded by granulosa cells and delineated by a basement membrane. This partitioning occurs within a tiny period and is dependent on the correct timing of the meiotic process, on an apoptotic wave that specifically targets oocytes and the remodelling of the basement membrane. Follicle formation is a crucial event of ovarian development because the follicle stock formed at the end of this process is non-renewable. Therefore, any disturbance of this process can lead to reproductive abnormalities in adulthood. Recent data on endocrine disruptors displaying estrogenic activity have involved the fragile estrogenic homeostasis in the process. We aimed at better understanding how the endogen estrogen 17b-estradiol (E2) contributes to follicle formation. To assess it, Sprague-Dawley rats were treated with E2 at different doses during follicle formation, /i.e./ in the 3 days following birth. We show that although this treatment impairs the development of the hepatic and ovarian detoxification systems, the female neonate is able to increase its estrogen clearance capabilities. Nevertheless, E2 treatment within this critical period triggers a dose-dependent decrease of oocyte number per ovary. Regardless of the E2 dose, puberty is advanced. All treated females are at least transiently fertile, yet these reproductive capabilities rapidly decline. A high (10 ”g/day) dose of E2 leads to a secondary infertility characterized by anovulation that probably result from a dysfunction of the whole reproductive tract. By contrast, a lower (0.1 ”g/day) dose of E2, that does not significantly modify neonatal oocyte survival, leads to a progressive reproductive senescence likely due to ovarian failure. Long-term troubles may originate from precocious E2 impact on the ovary since it disturbs ovarian transcriptome and produces many lesions on ovarian cell DNA

    Systemic compensatory response to neonatal estradiol exposure does not prevent depletion of the oocyte pool in the rat.

    Get PDF
    The formation of ovarian follicles is a finely tuned process that takes place within a narrow time-window in rodents. Multiple factors and pathways have been proposed to contribute to the mechanisms triggering this process but the role of endocrine factors, especially estrogens, remains elusive. It is currently hypothesized that removal from the maternal hormonal environment permits follicle formation at birth. However, experimentally-induced maintenance of high 17ÎČ-estradiol (E2) levels leads to subtle, distinct, immediate effects on follicle formation and oocyte survival depending on the species and dose. In this study, we examined the immediate effects of neonatal E2 exposure from post-natal day (PND) 0 to PND2 on the whole organism and on ovarian follicle formation in rats. Measurements of plasma E2, estrone and their sulfate conjugates after E2 exposure showed that neonatal female rats rapidly acquire the capability to metabolize and clear excessive E2 levels. Concomitant modifications to the mRNA content of genes encoding selected E2 metabolism enzymes in the liver and the ovary in response to E2 exposure indicate that E2 may modify the neonatal maturation of these organs. In the liver, E2 treatment was associated with lower acquisition of the capability to metabolize E2. In the ovary, E2 depleted the oocyte pool in a dose dependent manner by PND3. In 10 ”g/day E2-treated ovaries, apoptotic oocytes were observed in newly formed follicles in addition to areas of ovarian cord remodeling. At PND6, follicles without any visible oocyte were present and multi-oocyte follicles were not observed. Our study reveals a major species-difference. Indeed, neonatal exposure to E2 depletes the oocyte pool in the rat ovary, whereas in the mouse it is well known to increase oocyte survival

    Perinatal ovarian receptivity to estrogens.

    No full text
    <p>A–D: Quantitative RT-PCR for Esr1 (A), Esr2 (B), Gper (C) and Nr1i2 (D) performed on control ovaries at e18.5, day of birth (PND0) and PND12. Each point is constituted by three pools of at least four animals. Data points represent the mean ± SEM of the fold-change in target gene expression relative to a Snx17 reference gene and calibrator sample. Each point represents mRNA from 3 pools of ovaries from 3 animals. *p<0.05 (ANOVA, followed by PLSD test). <b>x</b> shows a statistically significant difference from e18.5 and <b>y</b> shows a statistically significant difference from PND0. E–P. <i>In situ</i> hybridizations for Esr1 (E, H), Esr2 (F, I, K), and Gper (G, J, L) in PND1 (E–G), PND6 (H-K) and PND2 (L-P) control ovaries show lower Esr1 expression in the ovary than in the oviduct epithelium (Ovd), higher expression of Esr2 in granulosa cells with follicle growth, and expression of Gper in the oocytes and granulosa cells. Inset in F shows a higher magnification of a group of follicles boxed in F. K shows a higher magnification of a primary (Iary and a secondary (IIary) follicles boxed in I. Inset in G shows another section of the ovary containing the oviduct. A comparison of <i>Gper</i> mRNA profile by <i>in situ</i> hybridization (L) with Esr2 (N, red) and Ybx2 (M, cytoplasmic, green) (and merged pictures O) by immunofluorescence revealed co-expression of both receptors in oocytes at the time of treatment. P shows hybridization with <i>Gper</i> sense probe. Scale bar: 100 ”m except in insert in F and K (50 ”m). Q-T. Quantitative RT-PCR for <i>Esr1</i> (Q), <i>Esr2</i> (R), <i>Gper</i> (S) and <i>Nr1i2</i> (T) using ovarian samples of controls (white bars) and animals treated with 10 ”g E2 at PND0 (2 h after injection) and PND1 (black bars) shows E2 impairment of post-natal <i>Gper</i> up-regulation. Each bar represents mean ± SEM of the fold-change in target gene expression relative to a Snx17 reference gene and calibrator sample. Each point represents mRNAs from 3 to 6 pools of 6–16 and 10–26 ovaries, respectively. *p<0.05 (ANOVA, followed by PLSD test).</p

    Ovarian reaction to acute estrogen exposure.

    No full text
    <p>A. A false-color heatmap shows cases of increasing, decreasing, detectable (but without differential expression) and undetectable transcript signal intensities across the replicates for different total ovary samples at the time points given (top). Each line corresponds to a probe set and each column to a sample replicate. A color scale is shown for signal intensity percentiles (bottom). Gene symbols and numbers of transcripts are shown at the right. B. Conventional RT-PCR screening of the expression of various enzymes involved in E2 metabolism in PND0, control (C) and E2-treated (E) PND1 and adult female ovaries, and PND0 livers reveals changes in expression of <i>Ugt1a1</i>, <i>Gsta2</i>, <i>Gstm5</i> between newborn and adult ovaries, stable expression of <i>Hsd17b2</i>, <i>Cyp1b1</i>, <i>Gstp1</i>, and the faint expression of <i>Sult1e1</i> and <i>Cyp2b1/2</i> by contrast to control <i>Snx17</i> RNAs. C–H. Quantitative RT-PCR for <i>Hsd17b2</i> (C), <i>Cyp1b1</i> (D), <i>Cyp2b1/2</i> (E), <i>Gsta2</i> (F), <i>Ugt1a1</i> (G) and the <i>Rbp4</i> E2 target gene (H) in ovaries of controls (white bars) and animals treated with 10 ”g E2 (black bars) at PND0 (2 h after injection) and PND1 shows E2 impairment of post-natal <i>Gper</i> up-regulation. Each bar represents mean ± SEM of the fold-change in target gene expression relative to a Snx17 reference gene and calibrator sample. Each point represents mRNAs from 3 to 6 pools of 6–16 and 10–26 ovaries, respectively. *p<0.05 (two-way ANOVA, followed by Tukey test).</p

    Plasma and hepatic reaction to acute estrogen exposure.

    No full text
    <p>A. Representative scheme of E2 biological activity and detoxification pathways. E2 can go through oxidative metabolism and be converted in E1 by 17bHsd2 or in hydroxyl-metabolites by enzymes of the Cyp family. Then it can be methylated by COMT, reduced by P450 reductase (resulting in DNA damage) or excreted after conjugative metabolism by GST. E2 can also be directly sulfo-conjugated by SULT or gluco-conjugated by UGT, and excreted. B–E. Plasma estradiol (B) and derivatives E2-sulfate (E2-S; C), estrone (D) and estrone-sulfate (E1-S; E) were measured by GC/MS from the day of birth (P0) to PND6 (P6). Each point represents the mean ± SEM of at least four pools of two animals each. A two-way ANOVA indicated that there was a significantly different profile for the 10 ”g/d E2 treatment than for all other treated or control groups (p<0.001), E1 (p<0.001), E1-S (p = 0.002). Hormonal levels varied according to time, independent of treatment, for each metabolite tested: E1 (p<0.001), E2 (p<0.001), E1-S (p<0.001) and E2-S (p<0.001) (n = 4–5 pools of 3 to 4 animals at PND0, 4–5 pools of 2–4 animals at PND1, 4 pools of 2–3 animals at PND2, 4 pools of 2 animals at PND3 and 8 animals at PND6). F–J. Quantitative RT-PCR for <i>Hsd17b2</i> (F), <i>Ugt1a1</i> (G), <i>Cyp1b1</i> (H), <i>Cyp2b1/2</i> (I) and <i>Gsta2</i> (J) using liver samples of controls (white bars) and animals treated with 10 ”g E2 at PND0 and PND1 (black bars) shows E2 impairment on post-natal <i>Hsd17b2</i>, <i>Cyp2b1/2</i> and <i>Gsta2</i> expression dynamics. Each bar represents mean ± SEM of the fold-change in target gene expression relative to a reference gene Snx17 and calibrator sample. Each point represents mRNA from 3 pools of ovaries from 3 animals. *p<0.05 (two-way ANOVA, followed by Tukey test). <b>a</b> shows an increase from PND0, <b>b</b> shows a decrease from PND1, <b>c</b> shows a decrease from PND3 and <b>*</b> shows a difference from the age-matched control group.</p
    corecore