329 research outputs found
Do chimpanzee food calls bias listeners toward novel items?
The study was funded by the National Swiss Foundation grant number: SNF 31003A_166458 and the NCCR Evolving Language, Swiss National Science Foundation Agreement #51NF40_180888.Social learning is beneficial in almost every domain of a social animal's life, but it is particularly important in the context of predation and foraging. In both contexts, social animals tend to produce acoustically distinct vocalizations, alarms, and food calls, which have remained somewhat of an evolutionary conundrum as they appear to be costly for the signaller. Here, we investigated the hypothesis that food calls function to direct others toward novel food items, using a playback experiment on a group of chimpanzees. We showed chimpanzees novel (plausibly edible) items while simultaneously playing either conspecific food calls or acoustically similar greeting calls as a control. We found that individuals responded by staying longer near items previously associated with food calls even in the absence of these vocalizations, and peered more at these items compared with the control items, provided no conspecifics were nearby. We also found that once chimpanzees had access to both item types, they interacted more with the one previously associated with food calls than the control items. However, we found no evidence of social learning per se. Given these effects, we propose that food calls may gate and thus facilitate social learning by directing listeners' attention to new feeding opportunities, which if integrated with additional cues could ultimately lead to new food preferences within social groups.Publisher PDFPeer reviewe
Polynomial growth of volume of balls for zero-entropy geodesic systems
The aim of this paper is to state and prove polynomial analogues of the
classical Manning inequality relating the topological entropy of a geodesic
flow with the growth rate of the volume of balls in the universal covering. To
this aim we use two numerical conjugacy invariants, the {\em strong polynomial
entropy } and the {\em weak polynomial entropy }. Both are
infinite when the topological entropy is positive and they satisfy
. We first prove that the growth rate of the volume of
balls is bounded above by means of the strong polynomial entropy and we show
that for the flat torus this inequality becomes an equality. We then study the
explicit example of the torus of revolution for which we can give an exact
asymptotic equivalent of the growth rate of volume of balls, which we relate to
the weak polynomial entropy.Comment: 22 page
Applying the estimands framework to non-inferiority trials: guidance on choice of hypothetical estimands for non-adherence and comparison of estimation methods
A common concern in non-inferiority (NI) trials is that non adherence due,
for example, to poor study conduct can make treatment arms artificially
similar. Because intention to treat analyses can be anti-conservative in this
situation, per protocol analyses are sometimes recommended. However, such
advice does not consider the estimands framework, nor the risk of bias from per
protocol analyses. We therefore sought to update the above guidance using the
estimands framework, and compare estimators to improve on the performance of
per protocol analyses. We argue the main threat to validity of NI trials is the
occurrence of trial specific intercurrent events (IEs), that is, IEs which
occur in a trial setting, but would not occur in practice. To guard against
erroneous conclusions of non inferiority, we suggest an estimand using a
hypothetical strategy for trial specific IEs should be employed, with handling
of other non trial specific IEs chosen based on clinical considerations. We
provide an overview of estimators that could be used to estimate a hypothetical
estimand, including inverse probability weighting (IPW), and two instrumental
variable approaches (one using an informative Bayesian prior on the effect of
standard treatment, and one using a treatment by covariate interaction as an
instrument). We compare them, using simulation in the setting of all or nothing
compliance in two active treatment arms, and conclude both IPW and the
instrumental variable method using a Bayesian prior are potentially useful
approaches, with the choice between them depending on which assumptions are
most plausible for a given trial
Sinemurian–Pliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin: Calibration to the ammonite biozonation of NW Europe
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Available online 12 December 2016The biostratigraphy of Sinemurian to lower Toarcian calcareous nannofossils has been investigated in the Sancerre-Couy core (Paris Basin), which contains a mixed assemblage of species with affinities to the northern and southern areas of the peri-tethyan realm, thus allowing for the use and calibration of the Mediterranean Province (Italy/S France) and NW Europe (UK) biozonation schemes. This study is based on semi-quantitative analyses of the calcareous nannofossil assemblage performed on 145 samples and the recorded bioevents are calibrated to the NW European Ammonite Zonation and to a new organic carbon isotope curve based on 385 data points. The main bioevents, i.e. the first occurrences of Parhabdolithus liasicus, Crepidolithus pliensbachensis, Crepidolithus crassus, Mitrolithus lenticularis, Similiscutum cruciulus sensu lato, Lotharingius hauffii, Crepidolithus cavus and Lotharingius sigillatus as well as the last occurrence of Parhabdolithus robustus, have been identified. However, we show that a large number of standard biostratigraphic markers show inconsistent occurrences at the base and top of their range, possibly accounting for some of the significant discrepancies observed between the different domains. In addition to the nine main bioevents used for the biozonation of the core, we document an additional 50 distinct bioevents, evaluate their reliability and discuss their potential significance by comparison to previous studies. A total of five significant negative organic carbon isotope excursions are identified and defined in the Paris Basin including the well-documented Sinemurian–Pliensbachian boundary event. One positive excursion is further defined in the Pliensbachian interval. Our calibration of high-resolution calcareous nannofossil biostratigraphy to ammonite biostratigraphy and organic carbon isotopes represents a new stratigraphic reference for the Lower Jurassic series
Salt-induced thermochromism of a conjugated polyelectrolyte
We report here the photophysical properties of a water-soluble conjugated polythiophene with cationic side-chains. When dissolved in aqueous buffer solution (PBS, phosphate buffered saline), there is ordering of the polymer chains due to the presence of the salts, in contrast to pure water, where a random-coil conformation is adopted at room temperature. The ordering leads to a pronounced colour change of the solution (the absorption maximum shifts from 400 nm to 525 nm). Combining resonance Raman spectroscopy with density functional theory computations, we show a significant backbone planarization in the ordered phase. Moreover, the ratio of ordered phase to random-coil phase in PBS solution, as well as the extent of intermolecular interactions in the ordered phase, can be tuned by varying the temperature. Femtosecond transient absorption spectroscopy reveals that the excited- state behaviour of the polyelectrolyte is strongly affected by the degree of ordering. While triplet state formation is favoured in the random-coil chains, the ordered chains show a weak yield of polarons, related to interchain interactions. The investigated polyelectrolyte has been previously used as a biological DNA sensor, based on optical transduction when the conformation of the polyelectrolyte changes during assembly with the biomolecule. Therefore, our results, by correlating the photophysical properties of the polyelectrolyte to backbone and intermolecular conformation in a biologically relevant buffer, provide a significant step forward in understanding the mechanism of the biological sensing
ASaiM: A Galaxy-based framework to analyze microbiota data
Background: New generations of sequencing platforms coupled to numerous bioinformatics tools have led to rapid technological progress in metagenomics and metatranscriptomics to investigate complex microorganism communities. Nevertheless, a combination of different bioinformatic tools remains necessary to draw conclusions out of microbiota studies. Modular and user-friendly tools would greatly improve such studies. Findings: We therefore developed ASaiM, an Open-Source Galaxy-based framework dedicated to microbiota data analyses. ASaiM provides an extensive collection of tools to assemble, extract, explore, and visualize microbiota information from raw metataxonomic, metagenomic, or metatranscriptomic sequences. To guide the analyses, several customizable workflows are included and are supported by tutorials and Galaxy interactive tours, which guide users through the analyses step by step. ASaiM is implemented as a Galaxy Docker flavour. It is scalable to thousands of datasets but also can be used on a normal PC. The associated source code is available under Apache 2 license at https://github.com/ASaiM/framework and documentation can be found online (http://asaim.readthedocs.io). Conclusions: Based on the Galaxy framework, ASaiM offers a sophisticated environment with a variety of tools, workflows, documentation, and training to scientists working on complex microorganism communities. It makes analysis and exploration analyses of microbiota data easy, quick, transparent, reproducible, and shareable
- …