14 research outputs found

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the enigma-anxiety working group

    Get PDF
    The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5–90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology

    Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group

    Get PDF
    The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5–90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology

    Functional brain connectome in posterior cortical atrophy

    No full text
    International audienceThis study investigated the functional brain connectome architecture in patients with Posterior Cortical Atrophy (PCA). Eighteen PCA patients and 29 age- and sex- matched healthy controls were consecutively recruited in a specialized referral center. Participants underwent neurologic examination, cerebrospinal fluid (CSF) examination for Alzheimer's disease (AD) biomarkers, cognitive assessment, and brain MRI. For a smaller subset of participants, FDG-PET examination was available. We assessed topological brain network properties and regional functional connectivity as well as intra- and inter-hemispheric connectivity, using graph analysis and connectomics. Supplementary analyses were performed to explore the association between the CSF AD profile and the connectome status, and taking into account hypometabolic, atrophic, and spared regions (nodes). PCA patients showed diffuse functional connectome alterations at both global and regional level, as well as a connectivity breakdown between the posterior brain nodes. They had a widespread loss of both intra- and inter-hemispheric connections, exceeding the structural damage, and including the frontal connections. In PCA, connectome alterations were identified in all the brain nodes irrespectively of their structural and metabolic classification and were associated with a connectivity breakdown between damaged and spared areas. Taken together, these findings suggest the potentially high sensitivity of graph-analysis and connectomic in capturing the progression and maybe early signs of neurodegeneration in PCA patients

    Functional Connectomics and Disease Progression in Drug-Naïve Parkinson's Disease Patients

    No full text
    Background Functional brain connectivity alterations may be detectable even before the occurrence of brain atrophy, indicating their potential as early markers of pathological processes.Objective We aimed to determine the whole-brain network topologic organization of the functional connectome in a large cohort of drug-naive Parkinson's disease (PD) patients using resting-state functional magnetic resonance imaging and to explore whether baseline connectivity changes may predict clinical progression.Methods One hundred and forty-seven drug-naive, cognitively unimpaired PD patients were enrolled in the study at baseline and compared to 38 age- and gender-matched controls. Non-hierarchical cluster analysis using motor and non-motor data was applied to stratify PD patients into two subtypes: 77 early/mild and 70 early/severe. Graph theory analysis and connectomics were used to assess global and local topological network properties and regional functional connectivity at baseline. Stepwise multivariate regression analysis investigated whether baseline functional imaging data were predictors of clinical progression over 2 years.Results At baseline, widespread functional connectivity abnormalities were detected in the basal ganglia, sensorimotor, frontal, and occipital networks in PD patients compared to controls. Decreased regional functional connectivity involving mostly striato-frontal, temporal, occipital, and limbic connections differentiated early/mild from early/severe PD patients. Connectivity changes were found to be independent predictors of cognitive progression at 2-year follow-up.Conclusions Our findings revealed that functional reorganization of the brain connectome occurs early in PD and underlies crucial involvement of striatal projections. Connectomic measures may be helpful to identify a specific PD patient subtype, characterized by severe motor and non-motor clinical burden as well as widespread functional connectivity abnormalities. (c) 2021 International Parkinson and Movement Disorder Societ

    Resting-state electroencephalographic biomarkers of Alzheimer’s disease

    No full text
    Objective: We evaluated the value of resting-state EEG source biomarkers to characterize mild cognitive impairment (MCI) subjects with an Alzheimer’s disease (AD)-like cerebrospinal fluid (CSF) profile and to track neurodegeneration throughout the AD continuum. We further applied a resting-state functional MRI (fMRI)-driven model of source reconstruction and tested its advantage in terms of AD diagnostic accuracy. Methods: Thirty-nine consecutive patients with AD dementia (ADD), 86 amnestic MCI, and 33 healthy subjects enter the EEG study. All ADD subjects, 37 out of 86 MCI patients and a distinct group of 53 healthy controls further entered the fMRI study. MCI subjects were divided according to the CSF phosphorylated tau/β amyloid-42 ratio (MCIpos: ≥ 0.13, MCIneg: < 0.13). Using Exact low-resolution brain electromagnetic tomography (eLORETA), EEG lobar current densities were estimated at fixed frequencies and analyzed. To combine the two imaging techniques, networks mostly affected by AD pathology were identified using Independent Component Analysis applied to fMRI data of ADD subjects. Current density EEG analysis within ICA-based networks at selected frequency bands was performed. Afterwards, graph analysis was applied to EEG and fMRI data at ICA-based network level. Results: ADD patients showed a widespread slowing of spectral density. At a lobar level, MCIpos subjects showed a widespread higher theta density than MCIneg and healthy subjects; a lower beta2 density than healthy subjects was also found in parietal and occipital lobes. Evaluating EEG sources within the ICA-based networks, alpha2 band distinguished MCIpos from MCIneg, ADD and healthy subjects with good accuracy. Graph analysis on EEG data showed an alteration of connectome configuration at theta frequency in ADD and MCIpos patients and a progressive disruption of connectivity at alpha2 frequency throughout the AD continuum. Conclusions: Theta frequency is the earliest and most sensitive EEG marker of AD pathology. Furthermore, EEG/fMRI integration highlighted the role of alpha2 band as potential neurodegeneration biomarker

    Cerebro-cerebellar motor networks in clinical subtypes of Parkinson's disease

    No full text
    Parkinson's disease (PD) patients can be classified in tremor-dominant (TD) and postural-instability-and-gait-disorder (PIGD) motor subtypes. PIGD represents a more aggressive form of the disease that TD patients have a potentiality of converting into. This study investigated functional alterations within the cerebro-cerebellar system in PD-TD and PD-PIGD patients using stepwise functional connectivity (SFC) analysis and identified neuroimaging features that predict TD to PIGD conversion. Thirty-two PD-TD, 26 PD-PIGD patients and 60 healthy controls performed clinical/cognitive evaluations and resting-state functional MRI (fMRI). Four-year clinical follow-up data were available for 28 PD-TD patients, who were classified in 10 converters (cTD-PD) and 18 non-converters (ncTDPD) to PIGD. The cerebellar seed-region was identified using a fMRI motor task. SFC analysis, characterizing regions that connect brain areas to the cerebellar seed at different levels of link-step distances, evaluated similar and divergent alterations in PD-TD and PD-PIGD. The discriminatory power of clinical data and/or SFC in distinguishing cPD-TD from ncPD-TD patients was assessed using ROC curve analysis. Compared to PD-TD, PD-PIGD patients showed decreased SFC in temporal lobe and occipital lobes and increased SFC in cerebellar cortex and ponto-medullary junction. Considering the subtype-conversion analysis, cPD-TD patients were characterized by increased SFC in temporal and occipital lobes and in cerebellum and ponto-medullary junction relative to ncPD-TD group. Combining clinical and SFC data, ROC curves provided the highest classification power to identify conversion to PIGD. These findings provide novel insights into the pathophysiology underlying different PD motor phenotypes and a potential tool for early characterization of PD-TD patients at risk of conversion to PIGD

    Structural and functional brain connectome in motor neuron diseases: A multicenter MRI study

    No full text
    Objective: To investigate structural and functional neural organization in amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS) and progressive muscular atrophy (PMA) patients. Methods: 173 ALS, 38 PLS, 28 PMA sporadic patients and 79 healthy controls were recruited from three Italian centers. Subjects underwent clinical, neuropsychological and brain MRI evaluations. Using graph analysis and connectomics, global and lobar topological network properties and regional structural and functional brain connectivity were assessed. The association between structural and functional network organization and clinical/cognitive data was investigated. Results: Compared to healthy controls, ALS and PLS patients showed altered structural global network properties, as well as local topological alterations and decreased structural connectivity in sensorimotor, basal ganglia, frontal and parietal areas. PMA patients showed preserved global structure. Patient groups did not show significant alterations of functional network topological properties relative to controls. Increased local functional connectivity was observed in ALS patients in the precentral, middle and superior frontal areas, and in PLS patients in the sensorimotor, basal ganglia and temporal networks. In both ALS and PLS patients, structural connectivity alterations correlated with motor impairment, while functional connectivity disruption was closely related to executive dysfunctions and behavioral disturbances. Conclusions: This multicenter study showed widespread motor/extra-motor network degeneration in ALS and PLS, suggesting that graph analysis and connectomics might represent a powerful approach to detect upper motor neuron degeneration, extra-motor brain changes and network reorganization associated with the disease. Network-based advanced MRI provides an objective in vivo assessment of motor neuron diseases, delivering potential prognostic markers
    corecore