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Deep learning: a turning point in acute neurology
Deep learning is a form of artificial intelligence, 
mimicking the structure and organisation of neurons and 
human intelligence in the brain. In the past decade, deep 
learning has been applied enthusiastically in the field of 
medicine, outperforming other established methods. In 
the different branches of neuroscience, for instance, deep 
learning algorithms have proven their worth in many 
ways including aiding the anatomical segmentation of 
specific brain structures,1 the delineation of brain lesions 
including tumours,2 and the image-based prediction 
of different neurological diseases.3 Thanks to the 
optimisation of algorithms, improved computational 
hardware, and access to a large amount of imaging data, 
deep learning is no longer just an academic exercise, but 
a valuable tool in clinical practice.

In The Lancet Digital Health, Miguel Monteiro, Virginia 
Newcombe, and colleagues4 provide a clinically 
significant, open-access deep learning algorithm, based 
on convolutional neural networks (CNN), with the 
ability to detect, segment, quantify, and differentiate 
brain lesion types on head CT images in patients 
with traumatic brain injury (TBI). TBI is a condition 
of vast proportions; worldwide it is the leading cause 
of mortality in young adults and a major cause of 
death and disabilities across all ages.5 The major 
clinical challenges in patients with TBI include how to 
appropriately evaluate the patients, predict patient 
outcomes, and identify a suitable treatment strategy 
and rehabilitation programme. Almost universally, 
patients with TBI undergo CT scans as a conventional 
procedure to aid diagnosis. CT also plays a fundamental 
role for triage in the acute phase to identify patients who 
require urgent neurosurgical intervention.6 Considering 
such background, this work4 explored two important 
questions. First, how does the deep learning algorithm 
fit in the routine clinical setting to replace and improve 
time-consuming neuroradiological procedures? And 
second, how can this artificial intelligence method help 
in the medical and surgical treatment decision-making 
of individual patients with TBI?

Monteiro, Newcombe, and colleagues4 used a dataset 
of 98 manually segmented scans to train and validate an 
initial CNN. This CNN was then used to segment a new 
dataset of 839 scans, which the authors then corrected 
manually, obtaining accurate ground truth data. A 

subset of 184 scans from the second dataset was used 
as a training set of the final CNN for multiclass voxel-
wise segmentation of lesion types, and the remaining 
655 scans were used as a testing set, evaluating 
the performance of this CNN. Finally, they used an 
independent set of 500 scans to externally validate their 
CNN. They found that compared with manual reference, 
CNN-derived lesion volumes showed a mean difference 
of 0·86 mL (95% CI –5·23 to 6·94) for intraparenchymal 
haemorrhage, 1·83 mL (–12·01 to 15·66) for extra-axial 
haemorrhage, 2·09 mL (–9·38 to 13·56) for perilesional 
oedema, and 0·07 mL (–1·00 to 1·13) for intraventricular 
haemorrhage.

Within the context of the overall flow of neuro
radiology work, the CNN developed by Monteiro, 
Newcombe, and colleagues4 addressed onerous 
tasks such as detecting and segmenting multiclass 
haemorrhagic lesions, both of which have strong 
implications in clinical practice, in particular in 
centres where radiological expertise is less easily 
available. Indeed, automation of lesion detection 
and segmentation would minimise inter-observer 
variability and discordance in reporting lesions, 
increase reliability and generalisability of findings, and 
reduce the amount of time-consuming assessments 
neuroradiologists would need to do. Previous studies7,8 
attempted to automate acute intracranial haemorrhage 
segmentation on relatively small datasets, without 
ensuring robustness and generalisability of the models. 
Major strengths of the study by Monteiro, Newcombe, 
and colleagues4 are the use of large numbers of CT scans 
from multicentre, heterogeneous datasets to train, 
validate, and test the CNN, and the further external 
validation of the model on a large, independent, 
unseen dataset. This validation was essential to show 
consistency and efficacy of the algorithm performance 
in real-word application. Additionally, the authors used a 
so-called ground truth reference of manually annotated 
and manually corrected automatic segmentation of 
CT scans to more accurately assess the deep learning 
predictions. The availability of high-quality noiseless 
ground truth data enabled the algorithm to improve its 
learning capability. 

What would be the impact of the CNN on the future 
medical and surgical treatment decision-making of 
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patients with TBI? Previous approaches9,10 to automate 
assessment of CT images for TBI were mostly limited 
to the undifferentiated binary detection of lesions with 
no volumetric analysis. Identifying and quantifying 
different types of haemorrhagic lesions and perilesional 
oedema in patients with TBI is crucial to unravel 
the heterogeneous spectrum of pathology involved 
and improve prediction of the clinical progression 
of a patient’s TBI. In the quantitative multiclass 
segmentation assessment, the CNN developed by 
Monteiro, Newcombe, and colleagues4 detected four 
lesion types—intraparenchymal haemorrhage, extra-
axial haemorrhage, intraventricular haemorrhage, and 
perilesional oedema—and measured their volume with 
high accuracy. These features are particularly valuable 
in the TBI context for image-based diagnosis, for 
assessing injury type, and for quantifying its burden 
and progression. The capability of the aforementioned 
algorithm to complete a fine-grained segmentation 
of lesions and consequently to estimate their volumes 
allows accurate monitoring of lesion progression, which 
is a major predictor of clinical evolution and a key target 
for therapies in acute phases.

The study by Monteiro, Newcombe, and colleagues4 
stands out also for having dealt with the challenging 
delineation of hypointense oedema. Although the 
performance of the CNN for this delineation was 
suboptimal, automated quantification of perilesional 
oedema can provide useful additional information for 
prognosis and for delineation of surrogate outcome 
variables to facilitate the design of clinical trials aimed at 
reducing cerebral oedema and contusion growth.

One possible limitation of this algorithm is 
the inability to localise lesions. This would give 
more strength mainly in the assessment of small 
haemorrhagic lesions, whose effect depends mostly on 
number and regional distribution, rather than on the 
volume of each lesion. Moreover, implementing the 
algorithm to also distinguish extra-axial haemorrhagic 
lesions would increase the value of prognostic models.

The findings by Monteiro, Newcombe, and colleagues4 
highlight the potential gain in applying a CNN to obtain 
quantitative and objective neuroradiological metrics 
in patients with TBI. Future multimodal algorithms 
integrating neuroradiological, clinical, blood, and 
cerebrospinal fluid data are now needed to make 
artificial intelligence a precious tool capable of helping, 
supporting, and interacting with the medical staff 
decisions in the management of patients with TBI in 
ordinary settings and broader populations.
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