231 research outputs found
Exclusive coherent production of heavy vector mesons in nucleus-nucleus collisions at LHC
Heavy nuclei at collider energies are a source of high energy
Weizsaecker-Williams photons. This photon flux may be utilized to study high
energy photon-nucleus interactions. Here we concentrate on the coherent
diffractive production of heavy vector mesons on nuclear targets and show how
it probes the unintegrated glue of the nucleus in the saturation domain. We
present predictions for rapidity distributions of exclusive coherent J/Psi and
Upsilon mesons which can be measured by the ALICE experiment at the LHC.Comment: 17 pages, 12 eps figure
Adjuvant Radiochemotherapy with a 23-Month Overall Survival Time in a Patient after a Surgery due to Splenic Hemangiosarcoma Rupture: A Case Report with the Literature Review
Spleen sarcoma is one of the most rare soft tissue malignancies. The annual incidence is 0.14–0.25/1,000,000 and the average age of diagnosis is 50 to 73 years. The incidence of this cancer has been increasing. Treatment of choice is surgical splenectomy, which rarely gives good results due to the aggressive course of the disease as well as the high potential for metastasis. Overall survival in primary spleen sarcomas as described by various authors is between 4 and 14 months. 80% of patients after spleen rupture do not survive 6 months. We report the case of a 42-year-old male diagnosed with spleen angiosarcoma. The patient underwent surgery in an emergency mode because of rapid rupture of the organ. Due to positive surgical margins, he underwent adjuvant radiochemotherapy followed by chemotherapy. Overall survival time was relatively long (23 months). The international guidelines provide information based on limited data. The role of postoperative radiotherapy in angiosarcomas remains controversial. Postoperative radiotherapy may increase local disease control, especially after nonradical operation, but this does not translate into improvement in overall survival time of these patients. The case shows that adjuvant radiotherapy as part of cancer treatment strategy may prolong the overall survival
fMRI evidence of ‘mirror’ responses to geometric shapes
Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control
LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model
Persistent activation of the signal transducer and activator of transcription 3 (STAT3) signalling has been linked to oncogenesis and the development of chemotherapy resistance in glioblastoma and other cancers. Inhibition of the STAT3 pathway thus represents an attractive therapeutic approach for cancer. In this study, we investigated the inhibitory effects of a small molecule compound known as LLL-3, which is a structural analogue of the earlier reported STAT3 inhibitor, STA-21, on the cell viability of human glioblastoma cells, U87, U373, and U251 expressing constitutively activated STAT3. We also investigated the inhibitory effects of LLL-3 on U87 glioblastoma cell growth in a mouse tumour model as well as the impact it had on the survival time of the treated mice. We observed that LLL-3 inhibited STAT3-dependent transcriptional and DNA binding activities. LLL-3 also inhibited viability of U87, U373, and U251 glioblastoma cells as well as induced apoptosis of these glioblastoma cell lines as evidenced by increased poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavages. Furthermore, the U87 glioblastoma tumour-bearing mice treated with LLL-3 exhibited prolonged survival relative to vehicle-treated mice (28.5 vs 16 days) and had smaller intracranial tumours and no evidence of contralateral invasion. These results suggest that LLL-3 may be a potential therapeutic agent in the treatment of glioblastoma with constitutive STAT3 activation. Originally published in British Journal of Cancer 2009 Vol. 110, No.
Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus
Phage therapy offers a potential alternate strategy for the treatment of peri-prosthetic joint infection (PJI), particularly where limited effective antibiotics are available. We undertook preclinical trials to investigate the therapeutic efficacy of a phage cocktail, alone and in combination with vancomycin, to reduce bacterial numbers within the infected joint using a clinically-relevant model of Staphylococcus aureus-induced PJI. Infected animals were randomised to 4 treatment groups, with treatment commencing 21-days post-surgery: bacteriophage alone, vancomycin alone, bacteriophage and vancomycin, and sham. At day 28 post-surgery, animals were euthanised for microbiological and immunological assessment of implanted joints. Treatment with phage alone or vancomycin alone, led to 5-fold and 6.2-fold reductions, respectively in bacterial load within peri-implant tissue compared to shamtreated animals. Compared to sham-treated animals, a 22.5-fold reduction in S. aureus burden was observed within joint tissue of animals that were administered phage in combination with vancomycin, corresponding with decreased swelling in the implanted knee. Microbiological data were supported by evidence of decreased inflammation within the joints of animals administered phage in combination with vancomycin, compared to sham-treated animals. Our findings provide further support for phage therapy as a tolerable and effective adjunct treatment for PJI
Forced Moves or Good Tricks in Design Space? Landmarks in the Evolution of Neural Mechanisms for Action Selection
This review considers some important landmarks in animal evolution, asking to what extent specialized action-selection mechanisms play a role in the functional architecture of different nervous system plans, and looking for “forced moves” or “good tricks” (see Dennett, D., 1995, Darwin’s Dangerous Idea, Penguin Books, London) that could possibly transfer to the design of robot control systems. A key conclusion is that while cnidarians (e.g. jellyfish) appear to have discovered some good tricks for the design of behavior-based control systems—largely lacking specialized selection mechanisms—the emergence of bilaterians may have forced the evolution of a central ganglion, or “archaic brain”, whose main function is to resolve conflicts between peripheral systems. Whilst vertebrates have many interesting selection substrates it is likely that here too the evolution of centralized structures such as the medial reticular formation and the basal ganglia may have been a forced move because of the need to limit connection costs as brains increased in size
Remote and local monitoring of dissolved and suspended fluorescent organic matter off the Svalbard
Distribution maps of CDOM and algal pigments, both in superficial and deep waters, have been obtained operating a portable dual laser spectrofluorometer and a lidar fluorosensor equipments for the first time during two polish AREX oceanographic campaigns in 2006 and 2007 summertime in the Svalbard area. The different hydrological regimes strongly affected the biological factors in the waters around the Svalbard Islands as monitored during the campaigns with strong regional differentiations between the two years. The occurrence of large phytoplanktonic blooms and patches have been observed in the western area of the Spitsbergen Island coastline due to the nutrient release from pack ice and/or iceberg melting with values of more than 10 µg/l in both campaigns. Different CDOM fractions have been monitored with the remote and local instruments and inverse proportionality with salinity is confirmed along the water column. Phycobilin pigments, as phycoerythrin and phycocyanin accessory algal pigments, have been monitored in the northern area as well as tyrosine and tryptophan protein-like fluorescence distribution. The double filtration, performed with the dual laser spectrofluorometer, allows to retrieve the small fluorescence contribution due to NADPH and carotenoids pigments in the blue fluorescence emission. Successively, the large spectroscopic data base has been critically analyzed with a robust statistic instrument, thus identifying different marine provinces and retrieve distinctive CDOM fractions
Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making
<div><p>Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making.</p></div
Bayesian Integration and Non-Linear Feedback Control in a Full-Body Motor Task
A large number of experiments have asked to what degree human reaching movements can be understood as being close to optimal in a statistical sense. However, little is known about whether these principles are relevant for other classes of movements. Here we analyzed movement in a task that is similar to surfing or snowboarding. Human subjects stand on a force plate that measures their center of pressure. This center of pressure affects the acceleration of a cursor that is displayed in a noisy fashion (as a cloud of dots) on a projection screen while the subject is incentivized to keep the cursor close to a fixed position. We find that salient aspects of observed behavior are well-described by optimal control models where a Bayesian estimation model (Kalman filter) is combined with an optimal controller (either a Linear-Quadratic-Regulator or Bang-bang controller). We find evidence that subjects integrate information over time taking into account uncertainty. However, behavior in this continuous steering task appears to be a highly non-linear function of the visual feedback. While the nervous system appears to implement Bayes-like mechanisms for a full-body, dynamic task, it may additionally take into account the specific costs and constraints of the task
A dynamic neural field approach to natural and efficient human-robot collaboration
A major challenge in modern robotics is the design of autonomous robots
that are able to cooperate with people in their daily tasks in a human-like way. We
address the challenge of natural human-robot interactions by using the theoretical
framework of dynamic neural fields (DNFs) to develop processing architectures that
are based on neuro-cognitive mechanisms supporting human joint action. By explaining
the emergence of self-stabilized activity in neuronal populations, dynamic
field theory provides a systematic way to endow a robot with crucial cognitive functions
such as working memory, prediction and decision making . The DNF architecture
for joint action is organized as a large scale network of reciprocally connected
neuronal populations that encode in their firing patterns specific motor behaviors,
action goals, contextual cues and shared task knowledge. Ultimately, it implements
a context-dependent mapping from observed actions of the human onto adequate
complementary behaviors that takes into account the inferred goal of the co-actor.
We present results of flexible and fluent human-robot cooperation in a task in which
the team has to assemble a toy object from its components.The present research was conducted in the context of the fp6-IST2 EU-IP
Project JAST (proj. nr. 003747) and partly financed by the FCT grants POCI/V.5/A0119/2005 and
CONC-REEQ/17/2001. We would like to thank Luis Louro, Emanuel Sousa, Flora Ferreira, Eliana
Costa e Silva, Rui Silva and Toni Machado for their assistance during the robotic experiment
- …