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Abstract

Phage therapy offers a potential alternate strategy for the treatment of peri-prosthetic joint

infection (PJI), particularly where limited effective antibiotics are available. We undertook

preclinical trials to investigate the therapeutic efficacy of a phage cocktail, alone and in com-

bination with vancomycin, to reduce bacterial numbers within the infected joint using a clini-

cally-relevant model of Staphylococcus aureus-induced PJI. Infected animals were

randomised to 4 treatment groups, with treatment commencing 21-days post-surgery: bac-

teriophage alone, vancomycin alone, bacteriophage and vancomycin, and sham. At day 28

post-surgery, animals were euthanised for microbiological and immunological assessment

of implanted joints. Treatment with phage alone or vancomycin alone, led to 5-fold and 6.2-

fold reductions, respectively in bacterial load within peri-implant tissue compared to sham-

treated animals. Compared to sham-treated animals, a 22.5-fold reduction in S. aureus bur-

den was observed within joint tissue of animals that were administered phage in combina-

tion with vancomycin, corresponding with decreased swelling in the implanted knee.

Microbiological data were supported by evidence of decreased inflammation within the joints

of animals administered phage in combination with vancomycin, compared to sham-treated

animals. Our findings provide further support for phage therapy as a tolerable and effective

adjunct treatment for PJI.

Introduction

Bacteriophage, or phages, are naturally occurring, obligate predators of bacteria that were dis-

covered in the early 20th century [1]. Phage safety in humans is well documented with phage

therapy used in Eastern Europe for almost a century for the treatment of acute and chronic

bacterial infections [2–4]. The continued and rapid global emergence of antibiotic resistance

due to overuse and misuse prompted the recent World Health Organisation warning of this
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silent pandemic and its imminent dire implications without immediate changes to antimicro-

bial stewardship and identification of alternative treatment strategies [5]. Consideration of

phages as an alternate therapeutic approach for difficult to treat bacterial infections, including

osteomyelitis, has renewed over the past decade with an increase in the number of published

case reports of successful clinical outcomes following phage therapy [6, 7] and a small number

of clinical trials completed, or in progress, in the USA, United Kingdom and Australia (https://

anzctr.org.au/, https://clinicaltrials.gov/, and https://globalclinicaltrialdata.com/) [3, 7]. None-

theless, statistical evidence of phage therapy efficacy has been inconsistent with clinical trials

completed to date, prompting calls for continued translational research efforts in this field so

as to guide effective clinical practice in future [7].

Prosthetic joint infection (PJI) following total knee arthroplasty (TKA) remains the leading

cause for revision surgery, with methicillin-susceptible Staphylococcus aureus (MSSA) the bac-

terium most frequently responsible [8–10]. S. aureus biofilm formation is a key component in

the virulence armamentarium of this bacterium in the pathogenesis of PJI. Bio-inert orthopae-

dic materials such as titanium provide habitable substrates for biofilm formation, a growth

state which serves to facilitate bacterial survival in hostile environments [11, 12]. Not only

does the structure of the biofilm limit the penetration of antibiotics and immune mediators,

but recalcitrance to treatment is also driven by altered metabolic phenotype of bacterial cells

within the biofilm matrix [12–14]. Consequently, current surgical and antibiotic management

strategies for PJI are not only costly and traumatic for the patient, but also associated with con-

siderable morbidity and mortality with failure rates of 14.8% to 25% [8, 15–17].

In contrast to antibiotics which decrease in concentration below the surface of bacterial bio-

films, phages are capable of penetrating biofilms and self-replicating [2]. To overcome poten-

tial limitations arising from the high phage specificity, phage cocktails have been used to

broaden the spectrum of activity [2, 18, 19]. Recently, a French case series was published

describing the successful treatment of PJI caused by S. aureus with phages in combination with

antibiotics [18]. However, while the application of phages for the treatment of bone and joint

infections appears promising, detailed preclinical and clinical studies to evaluate their in vivo
efficacy are lacking. To our knowledge, there have been no preclinical studies using models

that are clinically representative of TKA to investigate phage as an adjunct therapy for PJI

caused by S. aureus.
Proof-of-principle in vitro studies demonstrated potential application of a lytic phage cock-

tail to reduce S. aureus numbers within biofilms growing on custom 3D-printed, miniaturized

porous titanium implants, a material commonly used in the manufacture of orthopaedic

implants [20]. Using the same titanium implants and additional biomaterials employed in

modern TKA, a novel rat model of S. aureus biofilm-associated PJI was also recently character-

ised [21]. The aim of the current study was to compare the in vivo efficacy of single or combi-

nation therapy using a bacteriophage cocktail and vancomycin for reducing S. aureus burden

within the implanted knee of the rat model of S. aureus biofilm-associated PJI. We hypothe-

sised that S. aureus burden will be reduced in peri-implant tissue from animals receiving bacte-

riophage therapy, and that combination therapy with bacteriophage and vancomycin will

further reduce bacterial load.

Materials and methods

Ethics statement

The care and use of all animals in this study was in strict accordance to the National Health

and Medical Research Council Australian Code for the Care and Use of Animals for Scientific

Purposes. All animal experimental procedures were approved by the James Cook University
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Institutional Animal Ethics Committee (A2326). Surgeries were performed under isoflurane

anaesthesia and animal sacrifice was performed by pentobarbital (100 mg/kg) overdose at des-

ignated end-points.

Microorganism and antimicrobial agents

A previously described MSSA clinical isolate, ORI16_C02N, recovered from a patient with

delayed-onset PJI following TKA was used in the current study [20]. A single stock preparation

was cultured overnight in tryptic soya broth (TSB), and stored in multiple, snap-frozen ali-

quots at -80˚C. Aliquots from this master stock were used for all animal infection experiments.

Sterile titanium implants were pre-seeded with S. aureus under in vitro conditions prior to

implantation into rat femurs, as described previously [21]. The mean bacterial density on each

implant at the time of surgery (day 0) was 1.2 x106 CFU (range, 8.9 x 105–1.9 x 106 CFU).

Five lytic S. aureus-specific phages (StaPh_1, StaPh_3, StaPh_4, StaPh_11 and StaPh_16) of

the family, Myoviridae, were used to prepare the StaPhage cocktail for the current study [20].

In vitro spot tests were performed to confirm bactericidal activity of each phage toward

OR16_C02N [20]. Individual phage suspensions contained 1 x 109−12 plaque-forming units

(PFU)/mL and were stored at 4˚C, with titres and sterility confirmed prior to each use. For

preparation of StaPhage cocktail, individual phage preparations were adjusted 5 x 108 PFU/mL

in sterile 0.9% saline, then combined at equal volumes to achieve a cocktail containing 2.5 x

109 PFU/mL. StaPhage cocktail was prepared immediately prior to administration to animals.

Vancomycin powder (Alphapharm, Sydney, Australia) was dissolved in sterile water and

administered intraperitoneally at a dose of 50 mg/kg, as described below. The sensitivity of

OR16_C02N to vancomycin was confirmed by the epsilometer (Etest) method (BioMérieux,

Norwest, Australia) prior to the experiment (minimum inhibitory concentration, MIC 1.8 μg/

mL).

Animals

Conventional, twenty-week-old male Sprague-Dawley rats (n = 47, 360 to 480 g) were used.

Animals were individually caged, fed a standard pellet diet and provided water ad libitum.

After a 7-day acclimation period, knee implant surgery was performed on rats under isoflur-

ane anaesthesia using surgical techniques and materials, as described previously [21]. Surgeries

were performed on 10 to 12 animals per surgery day. Prior to each surgery day, animals were

randomised to a treatment group, with equal numbers of animals per treatment group for

each surgery date. The order of animals undergoing surgery on each surgery day was also ran-

domised. Briefly, a UHXLPE implant was seated in a small mantle of gentamicin-laden bone

cement (Heraeus Palacos1 R+G, Zimmer Biomet, Sydney, Australia) within the proximal

tibia. A titanium implant, pre-seeded with S. aureus, was press-fit into a defect created in the

distal femur. Following implantation, the patella was repositioned, and the capsule and skin

closed. Immediately after skin closure and prior to recovery from anaesthesia, animals received

pre-emptive analgesic consisting of a 0.05 mg/kg subcutaneous injection of buprenorphine

(Temgesic1) in a 1mL bolus of saline. Post-operative analgesic (buprenorphine, 0.01–0.05

mg/kg) was administered at 6 and 12 hrs post-surgery, with analgesic administered 12 hourly

thereafter, according to pain scores of individual animals. Clinical signs including body weight,

temperature and weight-bearing activity were monitored daily throughout the experimental

period. Establishment of infection was confirmed by differential white blood cell at day 5 post-

surgery (S1 Table) [21]. Animals were sacrificed at 28 days post-surgery (7 days after com-

mencing treatment) with an overdose of pentobarbital (100 mg/kg) for gross pathology,
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haematology, microbiology, inflammatory, and histological evaluation. All animal experimen-

tal procedures were approved by the Institutional Animal Ethics Committee (A2326).

Treatment

At commencement of the 7-day acclimation period prior to surgery, animals were randomised

to the following treatment groups: no treatment (Sham, n = 12), phage alone (Ph, n = 12), van-

comycin alone (V, n = 11), phage plus vancomycin (Ph+V, n = 12) (Fig 1). Normal (0.9%) ster-

ile saline was administered to sham-treated controls via the intraperitoneal (i.p.) route on day

21, 22 and 23 post-surgery. StaPhage cocktail (1.3 x 108 PFU; multiplicity of infection (MOI),

> 104 PFU:1 CFU) was administered via the i.p. route on day 21, 22 and 23 post-surgery. Van-

comycin (50 mg/kg, i.p.) was administered from day 21 to 27 post-surgery every 12 h [22–24].

Animals receiving combination therapy were administered phage and vancomycin in accor-

dance with the single therapy regimens.

Haematology and inflammatory assessments

Blood was collected under anaesthesia via the lateral tail vein during the experimental period

and via terminal cardiac puncture at day 28 post-surgery (Fig 1). Complete blood cell examina-

tion (CBE) was carried out using an automated ACT Diff analyser (Beckman Coulter, Brea

CA, USA). Blood samples were centrifuged, and plasma collected and stored at -80˚C until

analysis. C-reactive protein (CRP) was measured in plasma using a Rat C-reactive protein

ELISA (BD Biosciences, North Ryde, Australia) and calprotectin was measured in joint tissue

homogenates using a Rat Calprotectin ELISA (Cusabio, Houston, TX, USA), according to

manufacturer protocols. Inflammatory chemokines and cytokines (MCP-1, GRO/KC, MIP-2,

TNF-a, IL-1ß, IL-6, IL-12p70, IFN-g, IL-4, IL-10) were measured in plasma and joint tissue

homogenates using Milliplex1 Rat Cytokine/Chemokine Magnetic Bead Panel (RECYT-

MAG-65K, Lot #3070574 and #2927420, Abacus ALS, Meadowbrook, Queensland) in combi-

nation with the Magpix1 analyser (Luminex Corporation, Austin, Texas, USA). Assays were

carried out according to manufacturer’s instructions with samples measured in duplicate.

Fig 1. Schematic representation of the study protocol for evaluation of bacteriophage therapy in a rat model of S. aureus
biofilm-associated PJI. Blood sampling via the lateral tail vein (indicated by droplet) was performed 1 day prior to surgery, and at

day 5, 20 and 28 post-surgery. End-point analyses were performed at day 28 post-surgery (7 days after commencement of

treatment).

https://doi.org/10.1371/journal.pone.0226574.g001
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Microbiological analyses

Bacterial loads were determined in blood, tissues and implants from animals at day 28 post-

surgery, using methods described previously [21]. Briefly, liver, spleen, popliteal and inguinal

(draining) lymph nodes of the operated (right leg) and non-operated (left leg) limb were dis-

sected aseptically and weighed. The operated limb was also removed at the hip and soft tissue

dissected from the femur and tibia. Bone cuts were made approximately 2.5 cm proximal to

knee on femur and 2.5 cm distal on tibia. Titanium and UHXLPE implants were removed and

sonicated as described previously Lytic bacteriophages replicate within a specific host bacte-

rium causing lysis and death of the bacterial cell and release of phage progeny which perpetu-

ate the cycle as long as live bacterial target cells are present., with UHXLPE implants removed

from bone cement mantles prior to sonicating. After removal of implants, distal femur and

proximal tibia pieces were weighed, pulverised and homogenised in sterile phosphate buffered

saline (PBS, pH 7.2) [21]. In consideration of the potential for inadvertent haematogenous

seeding of implants by respiratory or gut flora following surgical stress in the animals, tissue

homogenates and implant sonicates were serially diluted in sterile PBS and cultured in tripli-

cate on both selective (mannitol salt agar, MSA) and non-selective (tryptic soy agar, TSA) agar

overnight to assess purity and to observe any phenotypic changes in colony morphology of the

S. aureus isolates recovered from the infected joints. The limit of detection for viable counts

was<5 CFU. Data is expressed as mean log10 CFU/total tissue or mean log10 CFU, as

indicated.

Antimicrobial sensitivity

Vancomycin and StaPhage sensitivity was determined for S. aureus (5–10 colonies) recovered

from femur and titanium implants of treated and untreated animals at day 28 post-surgery.

The susceptibility of the stock (pre-implantation) strain of ORI16-02N and isolates recovered

from animals (n = 8 animals per treatment group) toward the individual phages and the StaPh-

age cocktail was tested using standard spot tests, as described previously [20]. Briefly colonies

were recovered from TSA with a sterile cotton-tip swab, suspended in sterile TSB with 20%

glycerol (v/v) and aliquots snap-frozen at -80˚C. To assess antimicrobial sensitivity, single-use

aliquots were thawed, diluted in sterile TSB (1:5) and grown to log-phase (3 h, 37˚C, 100 rpm)

prior to preparation of bacterial lawns on TSA. Bacterial sensitivity to phage was considered

where confluent, semi-confluent, opaque lysis or individual plaques were observed in the bac-

terial lawn. A semi-quantitative scoring system (S1 Fig) was used to enable comparison of

phage sensitivity between isolates where: 0 = no plaques, 1 =< 10 individual plaques, 2 = 11–

100 individual plaques, 3 = partial clearing, >100 plaques, 4 = clearing with several distinct

bacterial colonies within the clearance zone, 5 = complete clearing. Vancomycin susceptibility

of S. aureus recovered from femur and titanium implants was compared to the pre-implanta-

tion S. aureus strain using the Etest method, and according to manufacturer protocols.

Statistics

Statistical analyses were performed using GraphPad Prism for Mac software (version 7). Data

normality was assessed using Shapiro-Wilks test, with Levene’s test used to determine equality

of variances. Non-normally distributed data was compared using a Mann-Whitney U test or

Kruskal-Wallis test with Dunn’s post-hoc analysis. Changes in haematology parameters

between groups were compared using two-way repeated measures ANOVA, with Holm-Sidak

post-hoc analysis. Within group differences were analysed with repeated measures ANOVA

with Dunnet’s post-hoc analysis. MILLIPLEX Analyst 5.1 software (Luminex Corporation,

Austin, Texas, USA) was used to determine cytokine and chemokine concentrations with a

Bacteriophage for treatment of peri-prosthetic joint infection
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5-parametric logistic weighted curve fit. Results are expressed as mean ± standard deviation

(SD) unless otherwise stated, with significance set at P < 0.05.

Results

Clinical outcomes

All animals survived surgery and the postoperative period with no signs of systemic illness.

Administration of analgesic was ceased by day 5 post-surgery for all animals based on

improved clinical scores. Body temperature increased significantly between baseline and day 5

post-surgery for all animals, though levels remained within normal ranges throughout the

experimental period with no discernible effects of treatment on body temperature (S1 Table)

[21]. Animals were able to bear partial weight within 48 h of surgery. The median time to full

weight bear was 18 days post-surgery, with 12 of 47 animals not returning to full weight-bear-

ing within the 28-day experimental period. No significant difference was observed in the time

for sham-treated animals (median 21 d, range 10–28 d), or animals treated with phage alone

(median 18 d, range 13–28 d), vancomycin alone (median 17 d, range 11–28 d) or combined

phage and vancomycin (median 18 d, range 11–28 d) to return to full weight bearing following

surgery.

Minor weight loss was observed for all animals in the first week following surgery, however

body weight increased thereafter (S1 Table). Compared to sham-treated controls, body weight

was significantly lower in animals treated with phage alone, vancomycin alone and phage plus

vancomycin at day 28 post-surgery, despite comparable pre-treatment weights at day 20 post-

surgery (S1 Table).

Haematology and systemic inflammation

There were no statistically significant differences in haematology parameters between treat-

ment groups at baseline, or throughout the experimental period (S1 Table). While significant

changes were observed in erythrocyte, leucocyte and platelet parameters for all animals follow-

ing surgery, numbers tended to return to pre-surgical levels by the end of the experimental

period, consistent with previous findings in this infection model [21]. Establishment of infec-

tion was confirmed for all animals by a significant increase in the percentage of neutrophils at

day 5 post-surgery as previously described [21]. Similarly, plasma CRP concentrations were

significantly increased at day 5 post-surgery for all animals, though concentrations returned to

baseline levels by day 20 post-surgery and were comparable between treatment groups at day

28 post-surgery (S1 Table). Plasma lactate concentrations (indirect marker of tissue hypoxia)

were significantly increased at day 28 post-surgery compared to pre-surgical levels for all treat-

ment groups however, no significant between-group differences observed (S1 Table).

Plasma inflammatory chemokine and cytokine levels were comparable between treatment

groups at day 28 post-surgery (7 days after commencing treatment; Fig 2). TNF-a and IFN-g

levels remained below the assay limit of detection for all animals (<2.4 pg/ml and<14.6 pg/

ml, respectively). No significant differences were observed between sham-treated and phage-

treated animals for any of the inflammatory mediators measured at day 28 post-surgery. Com-

pared to sham-treated animals, plasma IL-10 levels were significantly higher in animals treated

with vancomycin alone and combined phage and vancomycin at day 28 post-surgery (p = 0.04

and p = 0.001, respectively; Fig 2E). Similarly, MCP-1 levels were significantly elevated in

plasma from vancomycin-treated animals compared to sham-treated controls (p = 0.018; Fig

2A). No significant differences were observed in IL-6, IL-1ß and IL-4 concentrations in plasma

of vancomycin-treated and phage plus vancomycin-treated animals at day 28 post-surgery

compared to sham-treated controls (Fig 2B, 2C and 2F).
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Joint swelling and pathology

Surgical incisions healed without complication in all animals. Joint circumferences of

implanted knees were comparable between sham-treated, phage-treated and vancomycin-

treated animals (Fig 3A). Compared to treatment with phage alone, the joint circumference of

implanted knees was significantly less for animals receiving combination therapy (p = 0.016;

Fig 3A). Upon dissection, macroscopic examination of the operated knees of animals at day 28

post-surgery revealed mild to severe soft tissue and articular cartilage damage, often in combi-

nation with increased amount and viscosity of synovial fluid (Fig 3B). A numerical scoring sys-

tem was used for semi-quantitative evaluation of gross pathology within operated joints of

animals at day 28 post-surgery, where 1 = mild soft tissue and articular cartilage damage and

Fig 2. Systemic inflammatory mediators. Concentrations of MCP-1, IL-1ß, IL-12p70, IL-6, IL-10 and IL-4 were

measured in plasma of sham-treated (Sham, n = 10) and treated (Ph, phage alone, n = 8; V, vancomycin alone, n = 8;

Ph+V, phage plus vancomycin, n = 9) at day 28 post-surgery (7 days after commencement of treatment). Data shows

mean ± SD. �P< 0.05.

https://doi.org/10.1371/journal.pone.0226574.g002
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the absence of synovial effusion; 2 = moderate soft tissue changes, synovial thickening, occa-

sional focal damage to articular cartilage with synovial effusion; and 3 = severe and extensive

soft tissue damage, synovial thickening, articular cartilage damage and synovial effusion with

Baker’s cyst (Fig 3B). No significant differences were observed in joint pathology between

treatment groups, though there was a trend for reduced tissue damage within joints from ani-

mals that received combination therapy (p = 0.13; Fig 3C).

Joint bacterial loads

Seven days after commencement of antimicrobial therapy, peri-implant joint tissue (femur,

tibia, patella and associated tendons, joint capsule tissues) and implants (titanium, UHXLPE)

were harvested for enumeration of bacteria (Fig 4, Table 1). Peri-implant tissue weights were

comparable between sham-treated (3.0 ± 0.5 g), and phage alone (3.0 ± 0.4 g), vancomycin

alone (2.9 ± 0.3 g), and phage plus vancomycin (2.8 ± 0.4 g) treated animals (p = 0.632). Sham-

treated animals had 8.1 x 104 ± 2 x 105 CFU (range, 8 x 101–7 x 105 CFU) in peri-implant joint

tissue, and 3.7 x 104 ± 9.4 x 104 CFU (range, 1.5 x 102–3.3 x 105 CFU) recovered from titanium

implants (12 of 12 animals). Treatment with phage alone resulted in 1.6 x 104 ± 2.9 x 104 CFU

(p = 0.100; 5-fold reduction; range, 0–8 x 104 CFU) in peri-implant tissue and 6 x 103 ± 1 x 104

CFU (p = 0.947; 6.2-fold reduction; range, 1.2 x 102–3.7 x 104 CFU) from titanium implants.

Animals treated with vancomycin alone had 1.3 x 104 ± 1.9 x 104 CFU from peri-implant tissue

(p = 0.235; 6.2-fold reduction; range, 0–5.5 x 104 CFU) and 1.9 x 104 ± 5.2 x 104 CFU from tita-

nium implants (p = 0.921; 1.9-fold reduction; range, 2.3 x 102–1.8 x 105 CFU). Combination

therapy with phage and vancomycin significantly reduced S. aureus numbers to 3.6 x 103 ± 5.8

x 103 CFU (p = 0.014; 22.5-fold reduction; range, 0–1.6 x 104 CFU) in peri-implant tissue.

However, mean bacterial load on titanium implants was comparable to those in sham-treated

animals (p = 0.852; 3.7 x 104 ± 6.1 x 104 CFU; range, 4.1 x 101–1.6 x 105 CFU). S. aureus was

recovered from sonicated UHXLPE implants in sham-treated (4 of 12), phage alone (4 of 12),

vancomycin alone (5 of 11), and phage plus vancomycin combination therapy (3 of 12). No

significant differences were observed between mean bacterial numbers recovered from

UHXLPE implants between treatment groups though numbers tended to be lower from ani-

mals treated with phage plus vancomycin, compared to sham-treated control animals

(p = 0.365, Fig 4C; Sham, 2.7 x 102 ± 9.1 x 102 CFU v Ph+V, 4.4 x 100 ± 8.8 x 100 CFU).

S. aureus was recovered from the femur (12 of 12), tibia (10 of 12), patella and associated

tendons and capsular tissue (9 of 12) of sham-treated animals at day 28 post-surgery (Table 1).

In contrast, compared with sham-treatment, fewer animals were positive for S. aureus in tibia

(ns, p = 0.098; 1.8-fold decrease), patella and joint soft tissue (p = 0.025; 4-fold decrease) fol-

lowing combination-therapy (Table 1).

Effect of antimicrobial therapy on local inflammatory responses

Joint tissue concentration of calprotectin, an indirect marker of neutrophil infiltration, was

comparable between sham-treated and single and combination therapy groups at day 28 post-

surgery (Fig 5A). No significant differences were observed between sham-treated and phage

Fig 3. Joint swelling and pathology. A) Joint circumference of the operated (implant) limb of infected and sham-

treated (Sham, n = 12), and those treated with phage alone (Ph, n = 12), vancomycin alone (V, n = 11) and phage plus

vancomycin (Ph+V, n = 12) at day 28 post-surgery. Data shows mean ± SD. �P< 0.05 B. Representative images of mild

(1), moderate (2) and severe (3) joint pathology changes in the operated hind limb of infected animals at day 28 post-

surgery. Based on this scoring system, C) gross joint pathology scores were compared for sham-treated (Sham), and

those treated with phage alone (Ph), vancomycin alone (V) and phage plus vancomycin (Ph+V) at day 28 post-surgery

(7 days after commencement of treatment). Data shows median ± interquartile range.

https://doi.org/10.1371/journal.pone.0226574.g003
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alone treated animals for any of the inflammatory markers assayed. Compared to sham-treated

animals and animals treated with phage alone, MCP-1 was significantly lower in joint tissue of

animals treated with phage plus vancomycin at sacrifice (p = 0.0001 and p = 0.0002 respec-

tively; Fig 5B). While differences were not statistically significant, there was a trend for

decreased concentrations of MCP-1 in joint tissue from vancomycin alone treated animals

(p = 0.06). Concentrations of TNF-a, IL-1ß, IL-6 and IL-4 were comparable between sham-

treated, phage alone, vancomycin alone and phage plus vancomycin treatment groups (Fig 5C,

5D, 5E and 5I). Compared to sham-treated and animals treated with phage alone, significantly

increased IL-12p70 (p = 0.033 and p = 0.003, respectively), IFN-g (p = 0.007 and p = 0.008,

respectively) and IL-10 (p = 0.004 and p = 0.002) levels were measured in joint tissue from ani-

mals treated with vancomycin alone (Fig 5F, 5G and 5H).

Development of antimicrobial resistance

Phage sensitivity was assessed to determine whether isolates recovered from the femur and

excised titanium implants of animals (n = 8 per treatment group) at day 28 post-surgery were

as susceptible as the original pre-inoculating S. aureus strain (S2 Table). StaPhage cocktail sen-

sitivity of all S. aureus strains recovered from bone and titanium implants was comparable to

that of the original, pre-implantation strain. However, screening of individual phage prepara-

tions identified phage-resistant colonies for isolates recovered from the femur of animals

treated with phage alone, compared to the original S. aureus strain for StaPh_4, StaPh_11, and

StaPh_16 (S2 Table). StaPh_1- and StaPh_3-resistant colonies were also observed for isolates

recovered from bone and implants of sham-treated animals and animals that had been treated

with vancomycin alone or phage plus vancomycin, respectively (S2 Table). No significant dif-

ferences were observed in the sensitivity of S. aureus isolates from sham-treated and phage

alone-treated animals toward StaPhage cocktail (p = 0.608), StaPh_1 (p> 0.999), StaPh_3

(p = 0.315), StaPh_4 (p = 0.132), StaPh_11 (p> 0.999), StaPh_16 (p> 0.999) (S2 Table).

Fig 4. The effect of single and combination antimicrobial therapy on S. aureus numbers in implanted knees.

Phage alone (Ph, n = 12), vancomycin (V, n = 11) or phage plus vancomycin (Ph+V, n = 12) was administered

intraperitoneally to rats from day 21 post-surgery. Sham-treated (Sham) animals were administered an equivalent

volume of sterile 0.9% saline. Peri-implant joint and bone tissue and implants were harvested from animals 7 days after

commencement of antimicrobial therapy (28 days post-surgery) for enumeration of bacteria. The mean CFU count for

the A) peri-implant tissue homogenates for the entire joint (a sum of the femur, tibia, patella and surrounding capsular

tissue) following removal of implants, B) the titanium implants and C) the UHXLPE implants was determined for each

treatment group. Data shows log10 CFU/tissue and log10 CFU/implant ± SD. �P< 0.05 compared to sham-treated

animals.

https://doi.org/10.1371/journal.pone.0226574.g004

Table 1. Proportions of S. aureus positive cultures within the joint by specimen type and treatment group.

Treatment Group No. of positive cultures/Total number of samples

Femur Tibia Patella^

Sham 12/12 (100) 10/12 (83) 9/12 (75)

Ph 9/12 (75) 7/12 (58) 7/12 (58)

V 10/11 (91) 9/11 (82) 4/11 (36)

Ph+V 10/12 (83) 5/12 (42) 2/12� (17)

Number and percentage of joint tissue samples from which S. aureus was recovered at day 28 post-surgery in sham-

treated (Sham), and those treated with phage alone (Ph), vancomycin alone (V) and phage plus vancomycin (Ph+V).

^includes surrounding tendons and capsular tissue. Statistical analyses were conducted using the Chi-square test.

�P < 0.05 compared to sham-treated.

https://doi.org/10.1371/journal.pone.0226574.t001
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Within each treatment group, there was also no significant difference in phage sensitivity

between strains recovered from bone and those from the titanium implant (S2 Table).

Vancomycin susceptibility of bacterial isolates recovered from the peri-implant tissue of the

femur and the titanium implants of sham-treated animals (n = 8) and animals treated with

phage alone (n = 7), vancomycin alone (n = 7) or phage plus vancomycin (n = 7) at day 28

post-surgery was compared to the inoculating strain of S. aureus (Fig 6). The MIC for ORI-

16C02N (n = 5 independent tests) prior to implantation in the rat model of PJI was 1.8 μg/ml.

The MIC for the majority of S. aureus isolates recovered from peri-implant tissue of sham-

treated (p = 0.008), and animals treated with vancomycin alone (p = 0.02) and phage plus van-

comycin (p = 0.03) were significantly higher than pre-infection levels. Similarly, significantly

increased MICs were observed for S. aureus isolates recovered from titanium implants of

sham-treated (p = 0.02), and animals treated with vancomycin alone (p = 0.02) and phage plus

vancomycin (p = 0.03) compared to pre-infection levels. However, no significant differences

Fig 5. Inflammatory mediators in joint tissue. Concentrations of calprotectin, MCP-1, TNF-a, IL-1ß, IL-12p70, IFN-g, IL-6, IL-10 and IL-4 were measured in joint tissue

of implanted knees of sham-treated (Sham, n = 10) and animals treated with phage alone (Ph, n = 10), vancomycin (V, n = 10) or phage plus vancomycin (Ph+V, n = 10)

at day 28 post-surgery (7 days after commencement of treatment). Data shows mean ± SD. �P< 0.05.

https://doi.org/10.1371/journal.pone.0226574.g005
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were observed between vancomycin susceptibility of isolates from treated and untreated ani-

mals. Furthermore, in vitro vancomycin sensitivities were comparable between isolates recov-

ered from peri-implant tissue and the surface of titanium implants within each treatment

group (Fig 6).

Discussion

As a looming post-antibiotic era threatens to undo a century of infectious diseases advance-

ments, increasing consideration is once again being given to phages as an alternative approach

for treating bacterial infections [3, 5]. Lytic bacteriophages replicate within a specific host bac-

terium causing lysis and death of the bacterial cell and release of phage progeny which perpetu-

ate the cycle as long as live bacterial target cells are present. Due to the absence of cytotoxic

effects toward mammalian cells, their high specificity, and their ability to infect bacterial cells

within biofilms, phages could potentially be used as an adjunct to antibiotics for treatment of

biofilm-associated PJI, although to date, preclinical studies evaluating their in vivo efficacy

have been lacking [1–3, 18, 25]. Using a clinically-relevant rat model of S. aureus biofilm-asso-

ciated PJI following TKA, we show several key findings in the present study. Firstly, the combi-

nation of phages with vancomycin exerted a significantly increased therapeutic benefit

compared to single therapy. Secondly, phage therapy alone tended to reduce bacterial burden

within joint tissue and on the titanium implant of the infected knee within one week of com-

mencing treatment, though this did not reach statistical significance. Thirdly, no adverse local

or systemic inflammatory effects were observed following administration of several doses of

relatively high numbers of lytic phages. Finally, S. aureus isolates recovered from the infected

knee of animals that received phage therapy remained susceptible to the five-phage cocktail.

The model used in the present study is clinically representative of delayed-onset PJI, where

implant-associated biofilms and progressive inflammatory responses and tissue remodelling

occur in peri-implant tissue over a period of weeks following surgery [21]. Though demand-

ing, it is an appropriate translational model for evaluating in vivo antimicrobial efficacy against

Fig 6. In vitro vancomycin susceptibility of S. aureus isolates recovered from the peri-implant tissue. In vitro
vancomycin susceptibility of S. aureus isolates recovered from the femur (F) and the titanium implants (Ti) of sham-

treated animals (Sham, n = 8) and animals treated with phage alone (Ph, n = 7), vancomycin alone (V, n = 7) or phage

plus vancomycin (Ph+V, n = 7) at day 28 post-surgery was compared to the inoculating strain of S. aureus (dotted red

line, n = 5 individual tests, mean MIC = 1.8 μg/ml). Data shows median ± interquartile range.

https://doi.org/10.1371/journal.pone.0226574.g006
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biofilm-associated PJI. Our data support synergism between phages and vancomycin, leading

to significantly reduced bacterial burden within joint tissue within 7 days of commencing

treatment. While not statistically significant, the trend observed for decreased bacterial num-

bers on titanium implants from animals exposed to phage alone may hold clinical significance.

Immune cell infiltration was not directly measured in the present study however, levels of

IFN-g, IL-12p70 and IL-10 in joint tissue of animals treated with vancomycin alone were sig-

nificantly higher than in sham- and phage alone-treated animals, suggesting that bacterial

reduction observed in this group was associated with increased activation of cell-mediated

immune responses. In contrast, the similarities between calprotectin (indirect marker of neu-

trophil infiltration) and inflammatory mediator concentrations within peri-implant tissue

from sham- and phage alone-treated animals suggests the reduction in bacterial load is directly

attributed to bactericidal activity of phages, rather than immune activation per se.
Vancomycin pharmacokinetics in rodents have previously been described [26], and the

dose used in the present study is sufficient to significantly reduce S. aureus numbers in experi-

mental models of chronic osteomyelitis [22–24]. There is currently no standard regimen for

phage administration for treatment of PJI. Previous experimental studies evaluating phage

therapy for osteomyelitis have used doses of 107−109 PFU administered daily for 3 to 8 days

[19, 27, 28]. We therefore chose to administer over 3 consecutive days, using a phage cocktail

containing a high dose of phage (>108 PFU). However, the effectiveness of phage therapy is

dependent on the phage reaching the site of infection. Difficulties with eradication of chronic

PJI arise due to poor vascular perfusion of ischaemic bone, the accumulation of peri-implant

necrotic and fibrotic tissue and formation of sequestra which impede penetration of antimi-

crobials to the implant-associated biofilm [21, 29, 30]. It is possible that an extended therapeu-

tic regimen may have led to further reduction in bacterial burden. The mechanisms

underlying phage-antibiotic synergy and how these interactions evolve during the course of

therapy and influence clinical outcome remains an area of active investigation [3, 31].

In vivo persistence of phages at day 28 post-surgery (4 days after final administration of

phage cocktail) was confirmed in representative animals treated with phage and vancomycin

(Ph+V, n = 5) by standard spot tests with 10-fold dilutions of femur homogenates onto conflu-

ent growth of the propagating strains of S. aureus (AP029 and AP030) for the lytic phages used

in the study [32]. Further support for phage accumulation and replication within the infected

knee following i.p. administration is provided by the high phage doses administered, the

reduction in joint tissue bacterial loads 7 days after administration of phages, and the absence

of significant local inflammatory responses compared to administration of vancomycin alone.

Phage replication and in vivo persistence following systemic administration with doses compa-

rable to those used in the current study has also been well-documented [2, 33]. However, we

acknowledge that there may be differences in the proportion of each of the individual phage

preparations reaching the site of infection, and the contribution of each in reducing S. aureus
numbers.

Scheduling is an important consideration for phage therapy, particularly in relation to the

impact on innate and adaptive immune responses [34, 35]. Whilst phages cannot infect nor

replicate within eukaryotic cells, they do interact and influence eukaryotic cell activity, includ-

ing immune cells. Opsonisation of bacteria with phages for example, has been shown to

increase bacterial uptake by phagocytes [34, 36]. Strategies to improve the in vivo persistence

of phages following systemic delivery are actively being investigated and include encapsulation

with polymeric microparticles and liposomes [4, 36]. Administration of phages by alternate

routes, including oral, aerosol and perioperative delivery has also shown to be effective for

treatment of chronic bacterial infections [7]. Further studies to elucidate the optimal approach
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for phage administration and the mechanisms underlying the success or failure of phage ther-

apy for biofilm-associated PJI are warranted.

The potential emergence of phage-resistant variants following phage therapy is recognised,

with bacterial strains evolving strategies to block adsorption, prevent injection of phage genetic

material and interrupt other systems used by phages to replicate [37, 38]. However, the clinical

significance of phage-resistant variants remains unclear. A number of studies have shown that

phage resistance may diminish fitness or virulence of these bacterial variants and therefore

facilitate clearance by the immune system [38]. In addition to the role of selective pressure in

emergence of bacterial resistance, phage-resistant bacterial variants can also occur spontane-

ously [38]. This was observed in the present study for S. aureus isolates recovered from bone

and implants of sham- and vancomycin-treated animals. Notably, phage therapy was not asso-

ciated with the emergence of resistant variants toward the five-phage cocktail. Indeed, the use

of therapeutic phage cocktails is recommended for this very reason: variants resistant to one

specific phage type, may remain susceptible to the others comprising the cocktail [38]. Simi-

larly, vancomycin resistance was not observed following antibiotic administration in the pres-

ent study, with MICs remaining below the MIC breakpoint for intermediate resistance [39].

Nevertheless, the mean vancomycin MIC for S. aureus strains recovered from animals in all

treatment groups was significantly higher than the parent strain, suggesting that in vivo growth

contributes to the emergence of genetic or phenotypic changes that influence vancomycin sen-

sitivity. Selection for heteroresistance of MSSA to vancomycin (hVISA) and vancomycin MIC

creep has been described for osteoarticular infections, though the clinical significance of these

variants is not well understood [40, 41]. Further work to address the scientific and therapeutic

complexities of phage therapy for the treatment of biofilm-associated PJI including dosing,

route of administration and scheduling to improve delivery and efficacy at the site of infection

is warranted.

In summary, our data support the concept of phage therapy as a safe and effective adjunct

to antibiotics for treatment of S. aureus biofilm-associated PJI following TKA. Two-stage revi-

sion is currently the gold standard for management of delayed-onset or chronic PJI, though

success rates remain suboptimal [8, 15–17]. One-stage revision is a preferred, more cost-effec-

tive approach, requiring a single surgery [42]. If phages could be used in combination with

antibiotics, antimicrobial peptides and/or biofilm-disrupting enzymes to improve eradication

of bacterial biofilms, one-stage exchanges and implant retention may be feasible. These find-

ings lay the foundation for continued translational studies to optimise phage therapy as a via-

ble adjunct for the treatment of PJI in a post-antibiotic era.

Supporting information

S1 Fig. Scoring of in vitro sensitivity of S. aureus toward StaPhage preparations. Represen-

tative images of the semi-quantitative scoring system used to assess the in vitro S. aureus sus-

ceptibility toward StaPhage preparations. 0 = no plaques, 1 =< 10 individual plaques, 2 = 11–

100 individual plaques, 3 = partial clearing, >100 plaques, 4 = clearing with several distinct

bacterial colonies within the clearance zone, 5 = complete clearing.

(TIF)

S1 Table. Clinical and haematology parameters. Body weight, body temperature, haematol-

ogy and systemic inflammation were assessed at baseline, prior to (day 5 and 20 post-surgery)

and following treatment (day 28 post-surgery) for sham-treated (Sham) animals, and those

treated with phage alone (Ph), vancomycin alone (V) and phage plus vancomycin (Ph+V).

(PDF)
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S2 Table. Phage sensitivity patterns of S. aureus isolates. Sensitivity screening of individual

phage preparations and the StaPhage cocktail was performed for S. aureus isolates recovered

from femur and titanium implants of sham-treated animals and animals treated with phage

alone (Ph), vancomycin alone (V) or combination therapy (Ph+V) at day 28 post-surgery

(n = 8 animals per group), and compared to that of the original, pre-implantation S. aureus
strain.

(PDF)
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