144 research outputs found

    IPTS-ESTO Techno-Economic Analysis Report 1999-2000.

    Get PDF
    Abstract not availableJRC.J-Institute for Prospective Technological Studies (Seville

    Methanol Dehydrogenation on Pt Electrodes : Active Sites and Role of Adsorbed Spectators Revealed through Time-Resolved ATR-SEIRAS

    Get PDF
    ACKNOWLEDGMENT L.P.-M. acknowledges a doctoral scholarship within the Leverhulme Centre for Doctoral Training in Sustainable Production of Chemicals and Materials (Grant DS-2017-073).Peer reviewedPostprin

    Real-time monitoring of fenitrothion in water samples using a silicon nanophotonic biosensor

    Get PDF
    [EN] Due to the large quantities of pesticides extensively used and their impact on the environment and human health, a prompt and reliable sensing technique could constitute an excellent tool for in-situ monitoring. With this aim, we have applied a highly sensitive photonic biosensor based on a bimodal waveguide interferometer (BiMW) for the rapid, label-free, and speciÂżc quantiÂżcation of fenitrothion (FN) directly in tap water samples. After an optimization protocol, the biosensor achieved a limit of detection (LOD) of 0.29 ng mL¿¿1 (1.05 nM) and a half-maximal inhibitory concentration (IC50)of 1.71 ng mL¿¿1 (6.09 nM) using a competitive immunoassay and employing diluted tap water. Moreover, the biosensor was successfully employed to determine FN concentration in blind tap water samples obtaining excellent recovery percentages with a time-to-result of only 20 min without any sample pre-treatment. The features of the biosensor suggest its potential application for real time, fast and sensitive screening of FN in water samples as an analytical tool for the monitoring of the water quality.This work received financial support from DIONISOS Project (Retos Colaboracion RTC-2017-6222-5). The ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (AEI, grant no. SEV-2017-0706)Ramirez-Priego, P.; EstĂ©vez, M.; DĂ­az-Luisravelo, HJ.; Manclus Ciscar, JJ.; Montoya, Á.; Lechuga, LM. (2021). Real-time monitoring of fenitrothion in water samples using a silicon nanophotonic biosensor. Analytica Chimica Acta. 1152:1-9. https://doi.org/10.1016/j.aca.2021.338276S191152SĂĄnchez-Santed, F., Colomina, M. T., & Herrero HernĂĄndez, E. (2016). Organophosphate pesticide exposure and neurodegeneration. Cortex, 74, 417-426. doi:10.1016/j.cortex.2015.10.003Chough, S. H., Mulchandani, A., Mulchandani, P., Chen, W., Wang, J., & Rogers, K. R. (2002). Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity. Electroanalysis, 14(4), 273-276. doi:10.1002/1521-4109(200202)14:43.0.co;2-5Richardson, J. R., Fitsanakis, V., Westerink, R. H. S., & Kanthasamy, A. G. (2019). Neurotoxicity of pesticides. Acta Neuropathologica, 138(3), 343-362. doi:10.1007/s00401-019-02033-9Giordano, G., Afsharinejad, Z., Guizzetti, M., Vitalone, A., Kavanagh, T. J., & Costa, L. G. (2007). Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicology and Applied Pharmacology, 219(2-3), 181-189. doi:10.1016/j.taap.2006.09.016Çakir, ƞ., & Sarikaya, R. (2005). Genotoxicity testing of some organophosphate insecticides in the Drosophila wing spot test. Food and Chemical Toxicology, 43(3), 443-450. doi:10.1016/j.fct.2004.11.010Rahman, M. F., Mahboob, M., Danadevi, K., Saleha Banu, B., & Grover, P. (2002). Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 516(1-2), 139-147. doi:10.1016/s1383-5718(02)00033-5Yeh, S.-P., Sung, T.-G., Chang, C.-C., Cheng, W., & Kuo, C.-M. (2005). Effects of an organophosphorus insecticide, trichlorfon, on hematological parameters of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). Aquaculture, 243(1-4), 383-392. doi:10.1016/j.aquaculture.2004.10.017Smith, A. G., & Gangolli, S. D. (2002). Organochlorine chemicals in seafood: occurrence and health concerns. Food and Chemical Toxicology, 40(6), 767-779. doi:10.1016/s0278-6915(02)00046-7Kumar, P., Kim, K.-H., & Deep, A. (2015). Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosensors and Bioelectronics, 70, 469-481. doi:10.1016/j.bios.2015.03.066Schellin, M., Hauser, B., & Popp, P. (2004). Determination of organophosphorus pesticides using membrane-assisted solvent extraction combined with large volume injection–gas chromatography–mass spectrometric detection. Journal of Chromatography A, 1040(2), 251-258. doi:10.1016/j.chroma.2004.04.006SĂĄnchez, M. E., MĂ©ndez, R., GĂłmez, X., & MartĂ­n‐Villacorta, J. (2003). Determination of Diazinon and Fenitrothion in Environmental Water and Soil Samples by HPLC. Journal of Liquid Chromatography & Related Technologies, 26(3), 483-497. doi:10.1081/jlc-120017184Sherma, J. (1993). Pesticides. Analytical Chemistry, 65(12), 40-54. doi:10.1021/ac00060a004Grigoryan, H., Li, B., Xue, W., Grigoryan, M., Schopfer, L. M., & Lockridge, O. (2009). Mass spectral characterization of organophosphate-labeled lysine in peptides. Analytical Biochemistry, 394(1), 92-100. doi:10.1016/j.ab.2009.07.008Thompson, C. M., Prins, J. M., & George, K. M. (2010). Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts. Environmental Health Perspectives, 118(1), 11-19. doi:10.1289/ehp.0900824Wang, J., Chatrathi, M. P., Mulchandani, A., & Chen, W. (2001). Capillary Electrophoresis Microchips for Separation and Detection of Organophosphate Nerve Agents. Analytical Chemistry, 73(8), 1804-1808. doi:10.1021/ac001424eWatanabe, E., Kanzaki, Y., Tokumoto, H., Hoshino, R., Kubo, H., & Nakazawa, H. (2001). Enzyme-Linked Immunosorbent Assay Based on a Polyclonal Antibody for the Detection of the Insecticide Fenitrothion. Evaluation of Antiserum and Application to the Analysis of Water Samples. Journal of Agricultural and Food Chemistry, 50(1), 53-58. doi:10.1021/jf0108359Hua, X., Yang, J., Wang, L., Fang, Q., Zhang, G., & Liu, F. (2012). Development of an Enzyme Linked Immunosorbent Assay and an Immunochromatographic Assay for Detection of Organophosphorus Pesticides in Different Agricultural Products. PLoS ONE, 7(12), e53099. doi:10.1371/journal.pone.0053099Liu, G., & Lin, Y. (2005). Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 77(18), 5894-5901. doi:10.1021/ac050791tMane, P. C., Shinde, M. D., Varma, S., Chaudhari, B. P., Fatehmulla, A., Shahabuddin, M., 
 Chaudhari, R. D. (2020). Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Scientific Reports, 10(1). doi:10.1038/s41598-020-61130-yEnsafi, A. A., Rezaloo, F., & Rezaei, B. (2017). Electrochemical Determination of Fenitrothion Organophosphorus Pesticide Using Polyzincon Modified-glassy Carbon Electrode. Electroanalysis, 29(12), 2839-2846. doi:10.1002/elan.201700406Qi, P., Wang, J., Wang, X., Wang, X., Wang, Z., Xu, H., 
 Wang, X. (2018). Sensitive determination of fenitrothion in water samples based on an electrochemical sensor layered reduced graphene oxide, molybdenum sulfide (MoS2)-Au and zirconia films. Electrochimica Acta, 292, 667-675. doi:10.1016/j.electacta.2018.09.187Kant, R. (2019). Surface plasmon resonance based fiber–optic nanosensor for the pesticide fenitrothion utilizing Ta2O5 nanostructures sequestered onto a reduced graphene oxide matrix. Microchimica Acta, 187(1). doi:10.1007/s00604-019-4002-8Zinoviev, K. E., Gonzalez-Guerrero, A. B., Dominguez, C., & Lechuga, L. M. (2011). Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. Journal of Lightwave Technology, 29(13), 1926-1930. doi:10.1109/jlt.2011.2150734FernĂĄndez Gavela, A., Grajales GarcĂ­a, D., Ramirez, J., & Lechuga, L. (2016). Last Advances in Silicon-Based Optical Biosensors. Sensors, 16(3), 285. doi:10.3390/s16030285Maldonado, J., EstĂ©vez, M.-C., FernĂĄndez-Gavela, A., GonzĂĄlez-LĂłpez, J. J., GonzĂĄlez-Guerrero, A. B., & Lechuga, L. M. (2020). Label-free detection of nosocomial bacteria using a nanophotonic interferometric biosensor. The Analyst, 145(2), 497-506. doi:10.1039/c9an01485cHuertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162Maldonado, J., GonzĂĄlez-Guerrero, A. B., DomĂ­nguez, C., & Lechuga, L. M. (2016). Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients. Biosensors and Bioelectronics, 85, 310-316. doi:10.1016/j.bios.2016.04.095GonzĂĄlez-Guerrero, A. B., Maldonado, J., Dante, S., Grajales, D., & Lechuga, L. M. (2016). Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor. Journal of Biophotonics, 10(1), 61-67. doi:10.1002/jbio.201600154Chocarro-Ruiz, B., Herranz, S., FernĂĄndez Gavela, A., SanchĂ­s, J., FarrĂ©, M., Marco, M. P., & Lechuga, L. M. (2018). Interferometric nanoimmunosensor for label-free and real-time monitoring of Irgarol 1051 in seawater. Biosensors and Bioelectronics, 117, 47-52. doi:10.1016/j.bios.2018.05.044Chocarro-Ruiz, B., PĂ©rez-Carvajal, J., Avci, C., Calvo-Lozano, O., Alonso, M. I., Maspoch, D., & Lechuga, L. M. (2018). A CO2optical sensor based on self-assembled metal–organic framework nanoparticles. Journal of Materials Chemistry A, 6(27), 13171-13177. doi:10.1039/c8ta02767fManclĂșs, J. J., Primo, J., & Montoya, A. (1996). Development of Enzyme-Linked Immunosorbent Assays for the Insecticide Chlorpyrifos. 1. Monoclonal Antibody Production and Immunoassay Design. Journal of Agricultural and Food Chemistry, 44(12), 4052-4062. doi:10.1021/jf960144qDante, S., Duval, D., Fariña, D., GonzĂĄlez-Guerrero, A. B., & Lechuga, L. M. (2015). Linear readout of integrated interferometric biosensors using a periodic wavelength modulation. Laser & Photonics Reviews, 9(2), 248-255. doi:10.1002/lpor.20140021

    Proprioceptive Movement Illusions Due to Prolonged Stimulation: Reversals and Aftereffects

    Get PDF
    Background. Adaptation to constant stimulation has often been used to investigate the mechanisms of perceptual coding, but the adaptive processes within the proprioceptive channels that encode body movement have not been well described. We investigated them using vibration as a stimulus because vibration of muscle tendons results in a powerful illusion of movement. Methodology/Principal Findings. We applied sustained 90 Hz vibratory stimulation to biceps brachii, an elbow flexor and induced the expected illusion of elbow extension (in 12 participants). There was clear evidence of adaptation to the movement signal both during the 6-min long vibration and on its cessation. During vibration, the strong initial illusion of extension waxed and waned, with diminishing duration of periods of illusory movement and occasional reversals in the direction of the illusion. After vibration there was an aftereffect in which the stationary elbow seemed to move into flexion. Muscle activity shows no consistent relationship with the variations in perceived movement. Conclusion. We interpret the observed effects as adaptive changes in the central mechanisms that code movement in direction-selective opponent channels

    Comparison of weather station and climate reanalysis data for modelling temperature-related mortality

    Get PDF
    Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model

    Get PDF
    During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II afferents to mechanical joint behavior. Many mechanisms, like presynaptic inhibition and fusimotor drive, can account for reflex gain modulations. The goal of this study was to investigate the effects of underlying neural and sensory mechanisms on mechanical joint behavior. A neuromusculoskeletal model was built, in which a pair of muscles actuated a limb, while being controlled by a model of 2,298 spiking neurons in six pairs of spinal populations. Identical to experiments, the endpoint of the limb was disturbed with force perturbations. System identification was used to quantify the control behavior with reflex gains. A sensitivity analysis was then performed on the neuromusculoskeletal model, determining the influence of the neural, sensory and synaptic parameters on the joint dynamics. The results showed that the lumped reflex gains positively correlate to their most direct neural substrates: the velocity gain with Ia afferent velocity feedback, the positional gain with muscle stretch over II afferents and the force feedback gain with Ib afferent feedback. However, position feedback and force feedback gains show strong interactions with other neural and sensory properties. These results give important insights in the effects of neural properties on joint dynamics and in the identifiability of reflex gains in experiments
    • 

    corecore