16 research outputs found

    Thin-Walled Structures

    Get PDF
    This work presents a multi-scale design methodology for the deterministic optimisation of thin-walled composite structures integrating a global–local approach for the assessment of the buckling strength and a dedicated strategy to recover blended stacking sequences. The methodology is based on the multi-scale two-level optimisation strategy for anisotropic materials and structures. In the first step, focused on the macroscopic scale, several design requirements are included in the problem formulation: lightness, feasibility, manufacturing, blending, buckling failure, static failure and stiffness. The second step, which focuses on the laminate mesoscopic scale, deals with the recovery of blended stacking sequences, for the structure at hand, matching the optimal geometric and elastic properties determined in the first step. As a case study, the unconventional PrandtlPlane box-wing system is used to show the effectiveness of the proposed design methodology

    Sense of smell in chronic rhinosinusitis: A multicentric study on 811 patients

    Get PDF
    Introduction: The impairment of the sense of smell is often related to chronic rhinosinusitis (CRS) with or without nasal polyps (CRSwNP, CRSsNP). CRSwNP is a frequent condition that drastically worsens the quality of life of those affected; it has a higher prevalence than CRSsNP. CRSwNP patients experience severe loss of smell with earlier presentation and are more likely to experience recurrence of their symptoms, often requiring revision surgery. Methods: The present study performed a multicentric data collection, enrolling 811 patients with CRS divided according to the inflammatory endotype (Type 2 and non-Type 2). All patients were referred for nasal endoscopy for the assessment of nasal polyposis using nasal polyp score (NPS); Sniffin' Sticks olfactory test were performed to measure olfactory function, and SNOT-22 (22-item sinonasal outcome test) questionnaire was used to assess patients' quality of life; allergic status was evaluated with skin prick test and nasal cytology completed the evaluation when available. Results: Data showed that Type 2 inflammation is more common than non-type 2 (656 patients versus 155) and patients suffer from worse quality of life and nasal polyp score. Moreover, 86.1% of patients with Type 2 CRSwNP were affected by a dysfunction of the sense of smell while it involved a lesser percentage of non-Type 2 patients. Indeed, these data give us new information about type-2 inflammation patients' characteristics. Discussion: The present study confirms that olfactory function weights on patients' QoL and it represents an important therapeutic goal that can also improve patients' compliance when achieved. In a future - and present - perspective of rhinological precision medicine, an impairment of the sense of smell could help the clinician to characterize patients better and to choose the best treatment available

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Microfabrication of {pH}-responsive 3D hydrogel structures via two-photon polymerization of high-molecular-weight poly(ethylene glycol) diacrylates

    No full text
    3D pH-responsive microstructures by two-photon lithography (2 PL) in poly(ethylene glycol) diacrylates (PEG-DAs) hydrogels are particularly suitable for biosensing as structural and functional components. So far, 2 PL patterning of hydrogels have been successfully achieved only for low molecular-weight (<= 700 Da MMw) PEG-DAs, which is unfortunately not mechanically compliant with single cell and tissues stiffness. We report an optimised protocol to setup a 2 PL fabrication of high MMw (10 kDa) PEG-DA-based formulations, suitable for pH sensing in soft biological tissues. Two different shapes (pyramids and domes) were obtained and tested for mechanical characterization and pH responsiveness at the microscale. Fast pH-induced swelling (< 15 min) in microstructures allows for envisioning high MMw PEG-DA-based micro and nanostructures via 2 PL as a tunable pH responsive tool for biosensing applications in cell and tissue

    The strategic alliance between clinical and molecular science in the war against SARS-CoV-2, with the rapid-diagnostics test as an indispensable weapon for front line doctors

    Get PDF
    Our work concerns the actual problem of spread of SARS- CoV-2 outbreak which requires fast and correct as possible answer. In current scenario, the need of rapid answer put away the imperative of proper methodology. We focus on the serogical immunoassay for diagnosis of Covid-19 as an important weapon not only for diagnostic purpose, but also for epidemiologic one. The right equilibrium between high speed, low cost and accuracy is obtained with easy-to-use decentralized point-of-care test as the colloidal gold-based immunochromatographic strip assay which detects IgM and IgG antibodies directed against SARS-CoV-2. As our aim is to evaluate the efficacy of Covid-19 rapid tests and of serological assays in real-life settings, we designed a research protocol aimed to establish how to use correctly these diagnostics, taking into account the different possible clinical and epidemiological scenarios
    corecore