14 research outputs found

    Identification of genetic variants and phenotypic characterization of a large cohort of patients with congenital hypopituitarism and related disorders

    Get PDF
    PURPOSE: Congenital hypopituitarism (CH) disorders are phenotypically variable. Variants in multiple genes are associated with these disorders, with variable penetrance and inheritance. METHODS: We screened a large cohort (N = 1765) of patients with or at risk of CH using Sanger sequencing, selected according to phenotype, and conducted next-generation sequencing (NGS) in 51 families within our cohort. We report the clinical, hormonal, and neuroradiological phenotypes of patients with variants in known genes associated with CH. RESULTS: We identified variants in 178 patients: GH1/GHRHR (51 patients of 414 screened), PROP1 (17 of 253), POU1F1 (15 of 139), SOX2 (13 of 59), GLI2 (7 of 106), LHX3/LHX4 (8 of 110), HESX1 (8 of 724), SOX3 (9 of 354), OTX2 (5 of 59), SHH (2 of 64), and TCF7L1, KAL1, FGFR1, and FGF8 (2 of 585, respectively). NGS identified 26 novel variants in 35 patients (from 24 families). Magnetic resonance imaging showed prevalent hypothalamo-pituitary abnormalities, present in all patients with PROP1, GLI2, SOX3, HESX1, OTX2, LHX3, and LHX4 variants. Normal hypothalamo-pituitary anatomy was reported in 24 of 121, predominantly those with GH1, GHRHR, POU1F1, and SOX2 variants. CONCLUSION: We identified variants in 10% (178 of 1765) of our CH cohort. NGS has revolutionized variant identification, and careful phenotypic patient characterization has improved our understanding of CH. We have constructed a flow chart to guide genetic analysis in these patients, which will evolve upon novel gene discoveries

    Changes in Cathepsin Gene Expression and Relative Enzymatic Activity During Gilthead Sea Bream Oogenesis

    No full text
    8 pages, 4 figures, 3 tablesThe aim of this study was to provide evidence on the modulation of lysosomal enzymes in terms of both gene expression and enzymatic activity during follicle maturation. For this purpose three lysosomal enzymes, cathepsins B, D, and L, were studied in relation to yolk formation and degradation, during the main phases of ovarian follicle growth in the pelagophil species, the sea bream Sparus aurata. Specific attention was focused on the gene expression quantification method, on the assay of enzymatic activities, and on the relationship between the proteolytic cleavage of yolk proteins (YPs), cathepsin gene expression and cathepsin activities. For the gene expression study, the cathepsins B-like and L-like mRNAs were isolated and partially or fully characterized, respectively; the sequences were used as design specific primers for the quantification of cathepsin gene expression by real-time PCR, in follicles at different stages of maturation. The enzymatic assays for cathepsins B, D, and L were optimized in terms of specificity, sensitivity and reliability, using specific substrates and inhibitors. In ovulated eggs, the lipovitellin I (LV I) was degraded and the changes in electrophoretic pattern were preceded by an increase in the activity of a cysteine proteinase, cathepsin L, and its mRNA. Cathepsin B did not appear to be involved in YP changes during the final maturation stage.European Commission (DG Fisheries); Grant number: Project #Q5RS-2002-00784-CRYOCYTE.Peer reviewe
    corecore