92 research outputs found

    The Application of the Haddon Matrix to Public Health Readiness and Response Planning

    Get PDF
    State and local health departments continue to face unprecedented challenges in preparing for, recognizing, and responding to threats to the public’s health. The attacks of 11 September 2001 and the ensuing anthrax mailings of 2001 highlighted the public health readiness and response hurdles posed by intentionally caused injury and illness. At the same time, recent natural disasters have highlighted the need for comparable public health readiness and response capabilities. Public health readiness and response activities can be conceptualized similarly for intentional attacks, natural disasters, and human-caused accidents. Consistent with this view, the federal government has adopted the all-hazards response model as its fundamental paradigm. Adoption of this paradigm provides powerful improvements in efficiency and efficacy, because it reduces the need to create a complex family of situation-specific preparedness and response activities. However, in practice, public health preparedness requires additional models and tools to provide a framework to better understand and prioritize emergency readiness and response needs, as well as to facilitate solutions; this is particularly true at the local health department level. Here, we propose to extend the use of the Haddon matrix—a conceptual model used for more than two decades in injury prevention and response strategies—for this purpose

    Rickettsia parkeri Infection after Tick Bite, Virginia

    Get PDF
    We describe a man with a febrile illness and an eschar that developed at the site of a tick bite. Rickettsia parkeri was detected and isolated from the eschar. This report represents the second documented case of R. parkeri rickettsiosis in a US serviceman in eastern Virginia

    Expert Panel Recommendations on Lower Urinary Tract Health of Women Across Their Life Span

    Full text link
    Urologic and kidney problems are common in women across their life span and affect their daily life, including physical activity, sexual relations, social life, and future health. Urological health in women is still understudied and the underlying mechanisms of female urological dysfunctions are not fully understood. The Society for Women's Health Research (SWHR?) recognized the need to have a roundtable discussion where researchers and clinicians would define the current state of knowledge, gaps, and recommendations for future research directions to transform women's urological health. This report summarizes the discussions, which focused on epidemiology, clinical presentation, basic science, prevention strategies, and efficacy of current therapies. Experts around the table agreed on a set of research, education, and policy recommendations that have the potential to dramatically increase awareness and improve women's urological health at all stages of life.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140146/1/jwh.2016.5895.pd

    Sex differences in lower urinary tract biology and physiology

    Get PDF
    Abstract Females and males differ significantly in gross anatomy and physiology of the lower urinary tract, and these differences are commonly discussed in the medical and scientific literature. However, less attention is dedicated to investigating the varied development, function, and biology between females and males on a cellular level. Recognizing that cell biology is not uniform, especially in the lower urinary tract of females and males, is crucial for providing context and relevance for diverse fields of biomedical investigation. This review serves to characterize the current understanding of biological sex differences between female and male lower urinary tracts, while identifying areas for future research. First, the differences in overall cell populations are discussed in the detrusor smooth muscle, urothelium, and trigone. Second, the urethra is discussed, including anatomic discussions of the female and male urethra followed by discussions of cellular differences in the urothelial and muscular layers. The pelvic floor is then reviewed, followed by an examination of the sex differences in hormonal regulation, the urinary tract microbiome, and the reticuloendothelial system. Understanding the complex and dynamic development, anatomy, and physiology of the lower urinary tract should be contextualized by the sex differences described in this review

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF
    corecore