128 research outputs found

    Connexin43 Mimetic Peptide Improves Retinal Function and Reduces Inflammation in a Light-Damaged Albino Rat Model

    Get PDF
    PURPOSE. Drugs that regulate connexin43 (Cx43) gap junction channels can reduce the spread of injury and improve functional outcomes after nervous system trauma. In the eye, Cx43 expression increases in the choroid following light damage. The aim of this study was to investigate whether Cx43 hemichannel block could preserve retinal function postinjury. METHODS. Light damage was induced by exposure of adult albino Sprague-Dawley rats to 2700 Lux light for 24 hours. Intravitreal injections of a Cx43 mimetic peptide hemichannel blocker, Peptide5, or sham were administered 2 hours after the onset and at the end of the light damage period. Retinal function was assessed by electroretinogram and inflammatory responses in the choroid and retina were assessed using immunohistochemistry (ionized calcium binding adaptor molecule 1 [Iba-1], leukocyte common antigen [CD45], glial fibrillary acidic protein [GFAP]). RESULTS. Light-damaged rat eyes had (1) reduced neuronal responses in both the rod and cone pathways and (2) marked inflammatory responses in the choroid and retina. Peptide5 significantly preserved function of photoreceptoral and postphotoreceptoral neurons in these animals. This was evident 24 hours after injury and 2 weeks later, as shown by improved mixed a-wave and mixed b-wave amplitudes, isolated rod PII and PIII amplitudes, and cone PII responses when compared with sham-treated controls. Retinal thinning and inflammation were also significantly reduced in Peptide5-treated eyes when compared with sham-treated controls. CONCLUSIONS. Blocking Cx43 hemichannels after light damage can significantly improve functional outcomes of neurons in both the rod and cone photo-transduction pathways in the light-damaged animal model, likely by reducing choroid inflammation and suppressing the glial-mediated inflammatory response. These data may have relevance for the treatment of conditions such as diabetic retinopathy and age-related macular degeneration

    Tissue Transglutaminase Is a Negative Regulator of Monomeric Lacritin Bioactivity

    Get PDF
    PURPOSE. Molar accounting of bioactive fluids can expose new regulatory mechanisms in the growing proteomic focus on epithelial biology. Essential for the viability of the surface epithelium of the eye and for normal vision is the thin, but protein-rich, tear film in which the small tear glycoprotein lacritin appears to play a prominent prosecretory, cytoprotective, and mitogenic role. Although optimal bioactive levels in cell culture are 1 to 10 nM over a biphasic dose optimum, ELISA suggests a sustained tear lacritin concentration in the midmicromolar range in healthy adults. Here we identify a reconciling mechanism. METHODS. Monoclonal anti-lacritin 1F5 antibody was generated, and applied together with a new anti-C-terminal polyclonal antibody to tear and tissue Western blotting. In vitro tissue transglutaminase (Tgm2) cross-linking was monitored and characterized by mass spectrometry. RESULTS. Blotting for lacritin in human tears or saliva surprisingly detected immunoreactive material with a higher molecular weight and prominence equal or exceeding the~23 to 25 kDa band of monomeric glycosylated lacritin. Exogenous Tgm2 initiated lacritin cross-linking within 1 minute and was complete by 90 minutes-even with as little as 0.1 nM lacritin, and involved the donors lysine 82 and 85 and the acceptor glutamine 106 in the syndecan-1 binding domain. Lacritin spiked into lacritin-depleted tears formed multimers, in keeping with~0.6 lM TGM2 in tears. Cross-linking was absent when Tgm2 was inactive, and cross-linked lacritin, unlike recombinant monomer, bound syndecan-1 poorly. Enhanced TGM2 expression correlates with reduced cell viability, caspase activation, TNF receptor clustering, 7 and mitochondrial dysfunction 8 associated with hyperosmolar stress in dry eye. 14 Could TGM2 in tears regulate ocular surface biology? Lacritin is a 12.3 kDa tear prosecretory mitogen 15 with glutamine and lysine residues suitable for TGM2 catalyzed cross-linking. Lacritin promotes corneal epithelial cell survival (Zimmerman K, et al. IOVS 2012;53:ARVO E-Abstract 4231) and proliferation

    A Pilot Study of Lay Health Worker Outreach and Colorectal Cancer Screening Among Chinese Americans

    Get PDF
    The research team recruited eight Chinese American (seven females, one male) lay health workers (LHWs). They received 12 h of training about colorectal cancer (CRC), its screening, and basic health education techniques. Each LHW were asked to recruit ten participants and conduct two educational sessions. Of the 81 participants recruited, 73 had not received colorectal cancer screening. Their mean age was 63.0 years, and 72.6% were women. Knowledge of colorectal cancer, its causes, and its screening increased significantly. Receipt of first colorectal cancer screening test increased from 0.0% at baseline to 55.7% for fecal occult blood tests, 7.1% for sigmoidoscopy, and 7.1% for colonoscopy. LHW outreach is feasible and may be effective in promoting CRC screening among Chinese Americans

    HER-2 overexpression differentially alters transforming growth factor-β responses in luminal versus mesenchymal human breast cancer cells

    Get PDF
    INTRODUCTION: Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-β) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-β1 on breast cancer cells in the presence or absence of overexpressed HER-2. METHODS: Cell proliferation assays were used to determine the effect of TGF-β on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-β1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-β signaling pathway was assessed using TGF-β1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. RESULTS: We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-β1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-β in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-β induced pro-invasive and pro-metastatic gene signature. CONCLUSION: HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in part, by conferring resistance to the growth inhibitory effects of TGF-β. In contrast, HER-2 and TGF-β signaling pathways can cooperate to promote especially aggressive disease behavior in the context of a highly invasive breast tumor model

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore