112 research outputs found

    Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam

    Get PDF
    We report an early result from the ICARUS experiment on the search for nu_mu to nu_e signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an average energy of about 20 GeV, after a flight path of about 730 km. The LSND anomaly would manifest as an excess of nu_e events, characterized by a fast energy oscillation averaging approximately to sin^2(1.27 Dm^2_new L/ E_nu) = 1/2. The present analysis is based on 1091 neutrino events, which are about 50% of the ICARUS data collected in 2010-2011. Two clear nu_e events have been found, compared with the expectation of 3.7 +/- 0.6 events from conventional sources. Within the range of our observations, this result is compatible with the absence of a LSND anomaly. At 90% and 99% confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation probabilities of 5.4 10^-3 and 1.1 10^-2 are set respectively. The result strongly limits the window of open options for the LSND anomaly to a narrow region around (Dm^2, sin^2(2 theta))_new = (0.5 eV^2, 0.005), where there is an overall agreement (90% CL) between the present ICARUS limit, the published limits of KARMEN and the published positive signals of LSND and MiniBooNE Collaborations.Comment: 10 pages, 7 figure

    Measurement of Through-Going Particle Momentum By Means Of Multiple Scattering With The ICARUS T600 TPC

    Get PDF
    The ICARUS collaboration has demonstrated, following the operation of a 600 ton (T600) detector at shallow depth, that the technique based on liquid Argon TPCs is now mature. The study of rare events, not contemplated in the Standard Model, can greatly benefit from the use of this kind of detectors. In particular, a deeper understanding of atmospheric neutrino properties will be obtained thanks to the unprecedented quality of the data ICARUS provides. However if we concentrate on the T600 performance, most of the νμ\nu_\mu charged current sample will be partially contained, due to the reduced dimensions of the detector. In this article, we address the problem of how well we can determine the kinematics of events having partially contained tracks. The analysis of a large sample of atmospheric muons collected during the T600 test run demonstrate that, in case the recorded track is at least one meter long, the muon momentum can be reconstructed by an algorithm that measures the Multiple Coulomb Scattering along the particle's path. Moreover, we show that momentum resolution can be improved by a factor two using an algorithm based on the Kalman Filtering technique

    The ICARUS T600 Experiment in the Gran Sasso Underground Laboratory

    Get PDF
    With a mass of about 600 tons of Liquid Argon (LAr), the ICARUS T600 detector is the biggest, up to now, LAr Time Projection Chamber (TPC). Following its successful test run, on the Earth surface, in Pavia (Italy) in 2001, the detector is now very close to start data taking in the Gran Sasso underground laboratory. The main features of the LAr TPC technique, together with a short discussion of some of the ICARUS T600 test run results, are presented in this paper

    Open problems on graph coloring for special graph classes.

    Get PDF
    For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring

    Energy reconstruction of electromagnetic showers from [Pi 0] decays with the ICARUS T600 liquid argon TPC

    Get PDF
    We discuss the ICARUS T600 detector capabilities in electromagnetic shower reconstruction through the analysis of a sample of 212 events, coming from the 2001 Pavia surface test run, of hadronic interactions leading to the production of 0 mesons. Methods of shower energy and shower direction measurements were developed and the invariant mass of the photon pairs was reconstructed. The ( ) invariant mass was found to be consistent with the value of the 0 mass. The resolution of the reconstructed 0 mass was found to be equal to 27.3%. An improved analysis, carried out in order to clean the full event sample from the events measured in the crowded environment, mostly due to the trigger conditions, gave a 0 mass resolution of 16.1%, significantly better than the one evaluated for the full event sample. The trigger requirement of the coincidence of at least four photo-multiplier signals favored the selection of events with a strong pile up of cosmic ray tracks and interactions. Hence a number of candidate 0 events were heavily contaminated by other tracks and had to be rejected. Monte Carlo simulations of events with 0 production in hadronic and neutrino interactions confirmed the validity of the shower energy and shower direction reconstruction methods applied to the real data

    Assessment of selected B cells populations in the workers of X-ray departments

    Full text link
    Objectives: Workers of X-ray departments are occupationally exposed to long-term low levels of ionizing radiation (LLIR), which may affect their humoral immunity. The aim of the study was to assess the influence of LLIR on the number and proportion of B cells (CD19+), B1 cells (CD5+CD19+) and memory B cells (CD27+CD19+) in peripheral blood of such workers. Materials and Methods: In the study group of 47 X-ray departments workers and the control group consisting of 38 persons, the number and percentage of CD19+, CD5+CD19+, CD27+CD19+ cells as well as CD5+CD19+/CD19+ and CD27+CD19+/CD19+ cell ratios were assessed using flow cytometry. Additionally, the study group was divided into 2 groups by the length of employment below and over 15 years and analysis adjusted for age and smoking habit was performed. Results: The total number of CD19+ cells showed significant increase in the group of workers in comparison with the persons from the control group, whereas the percentage of CD5+CD19+ cells as well as CD27+CD19+/CD19+ and CD5+CD19+/CD19+ cell ratios were lower. Percentage, number of CD5+CD19+ cells and CD5+CD19+/CD19+ cell ratio were significantly lower in the workers with length of employment longer than 15 years in comparison with those employed below 15 years. Moreover, we found positive associations between the number of CD19+ cells and employment as well as smoking habit, whereas the number of CD5+CD19+ cells was positively associated with cigarette smoking alone. Percentage of CD5+CD19+ cells as well as CD5+CD19+/CD19+ and CD27+CD19+/CD19+ cell ratios were negatively correlated with employment. Conclusions: The study suggests association between the suppressive influence of low level ionizing radiation on circulating in peripheral blood, especially of B1 cells as well as of memory B cells, in workers of X-ray units, which is adverse in relation to microbiological threat

    operation and performance of the icarus t600 cryogenic plant at gran sasso underground laboratory

    Get PDF
    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported
    corecore