49 research outputs found

    MRD in Venetoclax-Based Treatment for AML: Does it Really Matter?

    Get PDF
    The prognosis of newly diagnosed patients with acute myeloid leukemia is still unfavorable in the majority of cases within the intermediate and mainly adverse genetic risk group but also in a considerable fraction of favorable-risk patients, mainly due to recurrence of disease after complete remission achievement or, less frequently, primary refractoriness. Besides genetic classification at diagnosis, post-treatment prognostic factors include measurable residual disease evaluation in patients in complete remission and in most cases measurable residual disease (MRD) positivity predicts hematologic relapse potentially allowing early therapeutic intervention. Currently, the most commonly used methods for detection of minimal residual disease are multiparameter flow cytometry and quantitative PCR, applicable to around 90% and 50% of patients, respectively. In addition, in > 90% of acute myeloid leukemia (AML) patients, molecular aberrations can be identified by next-generation sequencing, a technology that is widely used in clinical practice for the initial mutational screening at the time of diagnosis but more often, for MRD detection because its flexibility allows almost every mutated gene to be used as an MRD marker. Threshold levels of residual disease and correlation with outcome have been thoroughly studied and established in younger patients treated with intensive induction and consolidation chemotherapy as well as after allogeneic transplantation. Yet, experience on MRD monitoring and interpretation in patients treated with low-intensity regimens, including new agents, is still limited. The updated armamentarium of anti-leukemic agents includes the BCL-2 inhibitor venetoclax, which demonstrated good tolerability, high response rates, and prolonged overall survival when combined with hypomethylating agents or low dose cytarabine in patients considered elderly/”unfit” to tolerate intensive regimens. Although remissions with negative minimal residual disease clearly translated into improved outcomes after intensive treatments, data supporting the same evidence in patients receiving low-intensity venetoclax-based treatments are not still consolidated. We here review and discuss more recent data on the minimal residual disease interpretation and role in AML patients treated with venetoclax-based combinations

    Post-transplantation Cyclophosphamide and Sirolimus after Haploidentical Hematopoietic Stem Cell Transplantation Using a Treosulfan-based Myeloablative Conditioning and Peripheral Blood Stem Cells.

    Get PDF
    Haploidentical hematopoietic stem cell transplantation (HSCT) performed using bone marrow (BM) grafts and post-transplantation cyclophosphamide (PTCy) has gained much interest for the excellent toxicity profile after both reduced-intensity and myeloablative conditioning. We investigated, in a cohort of 40 high-risk hematological patients, the feasibility of peripheral blood stem cells grafts after a treosulfan-melphalan myeloablative conditioning, followed by a PTCy and sirolimus-based graft-versus-host disease (GVHD) prophylaxis (Sir-PTCy). Donor engraftment occurred in all patients, with full donor chimerism achieved by day 30. Post-HSCT recovery of lymphocyte subsets was broad and fast, with a median time to CD4 > 200/mu L of 41 days. Cumulative incidences of grade II to IV and III-IV acute GVHD were 15% and 7.5%, respectively, and were associated with a significant early increase in circulating regulatory T cells at day 15 after HSCT, with values < 5% being predictive of subsequent GVHD occurrence. The 1-year cumulative incidence of chronic GVHD was 20%. Nonrelapse mortality (NRM) at 100 days and 1 year were 12% and 17%, respectively. With a median follow-up for living patients of 15 months, the estimated 1-year overall and disease-free survival (DFS) was 56% and 48%, respectively. Outcomes were more favorable in patients who underwent transplantation in complete remission (1-year DFS 71%) versus patients who underwent transplantation with active disease (DFS, 34%; P = .01). Overall, myeloablative haploidentical HSCT with peripheral blood stem cells (PBSC) and Sir-PTCy is a feasible treatment option: the low rates of GVHD and NRM as well as the favorable immune reconstitution profile pave the way for a prospective comparative trial comparing BM and PBSC in this specific transplantation setting. (C) 2015 American Society for Blood and Marrow Transplantation

    IMMU-01. TEM-GBM: AN OPEN-LABEL, PHASE I/IIA DOSE-ESCALATION STUDY EVALUATING THE SAFETY AND EFFICACY OF GENETICALLY MODIFIED TIE-2 EXPRESSING MONOCYTES TO DELIVER IFN-A WITHIN GLIOBLASTOMA TUMOR MICROENVIRONMENT

    Get PDF
    Abstract Temferon is a macrophage-based treatment relying on ex-vivo transduction of autologous HSPCs to express immune-payloads within the TME. Temferon targets the immune-modulatory molecule IFN-a, to a subset of tumor infiltrating macrophages known as Tie-2 expressing macrophages (TEMs) due to the Tie2 promoter and a post-transcriptional regulation layer represented by miRNA-126 target sequences. As of 31st May 2021, 15-patients received Temferon (D+0) with follow-up of 3 – 693 days. After conditioning neutrophil and platelet engraftment occurred at D+13 and D+13.5, respectively. Temferon-derived differentiated cells, as determined be the number of vector copy per genome, were found within 14 days post treatment and persisted albeit at lower levels up to 18-months. Very low concentrations of IFN-a in the plasma (8.7 pg/ml-D+30) and in the CSF (1.6 pg/ml-D+30) were detected, suggesting tight regulation of transgene expression. Five-deaths occurred at D+322, +340, +402, +478 and +646 due to PD, and one at D+60 due to complications following the conditioning regimen. Eight-patients had progressive disease (range: D-11 to +239) as expected for this tumor type. SAEs include GGT elevation (possibly related to Temferon) and infections, venous thromboembolism, brain abscess, hemiparesis, seizures, anemia and general physical condition deterioration, compatible with ASCT, concomitant medications and PD. Four-patients underwent 2ndsurgery. Recurrent tumors had gene-marked cells and increased expression of ISGs compared to first surgery, indicative of local IFNa release by TEMs. In one patient, a stable lesion had a higher proportion of T cells and TEMs within the myeloid infiltrate and an increased ISGs than in the progressing lesion, detected in the same patient. Tumor-associated clones expanded in the periphery. TME characterization by scRNA and TCR-sequencing is ongoing. To date, Temferon is well tolerated, with no DLTs identified. The results provide initial evidence of Temferon potential to activate the immune system of GBM patients, as predicted by preclinical studies

    Case report: Ponatinib as a bridge to CAR-T cells and subsequent maintenance in a patient with relapsed/refractory Philadelphia-like acute lymphoblastic leukemia

    Get PDF
    Philadelphia (Ph)-like acute lymphoblastic leukemia (ALL) constitutes a heterogeneous subset of ALL with a uniformly unfavorable prognosis. The identification of mutations amenable to treatment with tyrosine kinase-inhibitors (TKIs) represents a promising field of investigation. We report the case of a young patient affected by relapsed/refractory Ph-like ALL treated with chimeric antigen receptor T (CAR-T) cells after successful bridging with compassionate-use ponatinib and low-dose prednisone. We restarted low-dose ponatinib maintenance three months later. Twenty months later, measurable residual disease negativity and B-cell aplasia persist. To the best of our knowledge, this is the first case reporting the use of ponatinib in Ph-like ALL as a bridge to and maintenance after CAR-T cell therapy

    High Risk of Secondary Infections Following Thrombotic Complications in Patients With COVID-19

    Get PDF
    Background. This study’s primary aim was to evaluate the impact of thrombotic complications on the development of secondary infections. The secondary aim was to compare the etiology of secondary infections in patients with and without thrombotic complications. Methods. This was a cohort study (NCT04318366) of coronavirus disease 2019 (COVID-19) patients hospitalized at IRCCS San Raffaele Hospital between February 25 and June 30, 2020. Incidence rates (IRs) were calculated by univariable Poisson regression as the number of cases per 1000 person-days of follow-up (PDFU) with 95% confidence intervals. The cumulative incidence functions of secondary infections according to thrombotic complications were compared with Gray’s method accounting for competing risk of death. A multivariable Fine-Gray model was applied to assess factors associated with risk of secondary infections. Results. Overall, 109/904 patients had 176 secondary infections (IR, 10.0; 95% CI, 8.8–11.5; per 1000-PDFU). The IRs of secondary infections among patients with or without thrombotic complications were 15.0 (95% CI, 10.7–21.0) and 9.3 (95% CI, 7.9–11.0) per 1000-PDFU, respectively (P = .017). At multivariable analysis, thrombotic complications were associated with the development of secondary infections (subdistribution hazard ratio, 1.788; 95% CI, 1.018–3.140; P = .043). The etiology of secondary infections was similar in patients with and without thrombotic complications. Conclusions. In patients with COVID-19, thrombotic complications were associated with a high risk of secondary infections

    Integrating a prospective pilot trial and patient-derived xenografts to trace metabolic changes associated with acute myeloid leukemia

    Get PDF
    Abstract Despite the considerable progress in understanding the molecular bases of acute myeloid leukemia (AML), new tools to link disease biology to the unpredictable patient clinical course are still needed. Herein, high-throughput metabolomics, combined with the other “-omics” disciplines, holds promise in identifying disease-specific and clinically relevant features. In this study, we took advantage of nuclear magnetic resonance (NMR) to trace AML-associated metabolic trajectory employing two complementary strategies. On the one hand, we performed a prospective observational clinical trial to identify metabolic changes associated with blast clearance during the first two cycles of intensive chemotherapy in nine adult patients. On the other hand, to reduce the intrinsic variability associated with human samples and AML genetic heterogeneity, we analyzed the metabolic changes in the plasma of immunocompromised mice upon engraftment of primary human AML blasts. Combining the two longitudinal approaches, we narrowed our screen to seven common metabolites, for which we observed a mirror-like trajectory in mice and humans, tracing AML progression and remission, respectively. We interpreted this set of metabolites as a dynamic fingerprint of AML evolution. Overall, these NMR-based metabolomic data, to be consolidated in larger cohorts and integrated in more comprehensive system biology approaches, hold promise for providing valuable and non-redundant information on the systemic effects of leukemia

    Virtual screening and crystallographic studies reveal an unexpected Îł-lactone derivative active against MptpB as a potential antitubercular agent

    No full text
    Mycobacterial resistance is a rapidly increasing phenomenon requiring the identification of new drugs effective against multidrug-resistant pathogens. The inhibition of protein tyrosine phosphatase B (MptpB), which interferes with host immune responses, may provide a new strategy to fight tuberculosis (TB), while preventing cross-resistance issues. On this basis, starting from a virtual screening (VS) campaign and subsequent structure elucidation studies guided by X-ray analyses, an unexpected g- lactone derivative (compound 1) with a significant enzymatic activity against MptpB was identified. The structural characterization of compound 1 was described by means of NMR spectroscopy, HRMS, single crystal X-ray diffraction and Hirshfeld surface analysis, allowing a detailed conformational investigation. Notably, the HPLC separation of (+/-)-1 led to the isolation of the most active isomer, which emerged as a very promising MptpB inhibitor, with an IC50 value of 31.1 mu M. Overall, the new chemotype described herein might serve as a basis for the development of novel treatments against TB infections.(c) 2022 Elsevier Masson SAS. All rights reserved
    corecore