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Abstract

Despite the considerable progress in understanding the molecular bases of acute myeloid leukemia (AML), new
tools to link disease biology to the unpredictable patient clinical course are still needed. Herein, high-throughput
metabolomics, combined with the other “-omics” disciplines, holds promise in identifying disease-specific and
clinically relevant features.
In this study, we took advantage of nuclear magnetic resonance (NMR) to trace AML-associated metabolic trajectory
employing two complementary strategies. On the one hand, we performed a prospective observational clinical trial
to identify metabolic changes associated with blast clearance during the first two cycles of intensive chemotherapy
in nine adult patients. On the other hand, to reduce the intrinsic variability associated with human samples and
AML genetic heterogeneity, we analyzed the metabolic changes in the plasma of immunocompromised mice upon
engraftment of primary human AML blasts.
Combining the two longitudinal approaches, we narrowed our screen to seven common metabolites, for which we
observed a mirror-like trajectory in mice and humans, tracing AML progression and remission, respectively. We
interpreted this set of metabolites as a dynamic fingerprint of AML evolution.
Overall, these NMR-based metabolomic data, to be consolidated in larger cohorts and integrated in more
comprehensive system biology approaches, hold promise for providing valuable and non-redundant information
on the systemic effects of leukemia.
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Re-programming energy metabolism is a hallmark of
cancer [1]. Acute myeloid leukemia (AML) permits
analysis of the impact of a systemic cancer on the me-
tabolism over time. Oncometabolites have been demon-
strated in 5–20 % of AML-harboring mutations in
Isocitrate Dehydrogenase (IDH) genes [2, 3], and the
metabolic profile of AML cell lines can be employed to

investigate drug treatments [4, 5]. Moreover, previous
studies linked AML with perturbation of metabolic path-
ways including glucose metabolism [6, 7]. Nuclear mag-
netic resonance (NMR) is a rapid, highly reproducible
cost-effective analytical tool to profile metabolic fluctua-
tions, requiring minimal sample manipulation and well
suited for automation and high-throughput purposes, thus
ideal for untargeted analysis in clinical applications [8–11].
To study the metabolic changes associated with AML in

patients, we enrolled nine newly diagnosed patients in a
prospective trial (METAM-02 trial, Additional file 1) and
monitored the metabolic trajectory of blast clearance
during the first two cycles of intensive chemotherapy (CT)
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Fig. 1 (See legend on next page.)
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Fig. 1 Metabolic changes in AML patients undergoing intensive chemotherapy. a Patient characteristics. CR1 first complete remission. *UPN#1
developed a lethal fungal pneumonia while in remission after the first consolidation CT cycle. **UPN#3 underwent allogeneic hematopoietic stem
cell transplantation in CR1 and subsequently relapsed. b Outline of the study design. c Superposition of representative 1H Carr-Purcell-Meiboom-
Gill (CPMG) spectra of BM at tp1H (black line) and tp9H (red line) acquired at 37 °C on a Bruker Avance 600-MHz spectrometer. The 1H CPMG NMR
experiment is based on a pulse sequence that strongly reduces the NMR signals deriving from large molecules; herewith, molecules with high molecular
weight are essentially invisible in the 1H spectrum, thus facilitating spectra interpretation and small molecule identification in the presence of large proteins
and lipoproteins. Peaks correspond to the different metabolites: 1—high-, low-, and very low-density lipoproteins (HDL, LDL, VLDL) CH3; 2—isoleucine;
3—leucine; 4—valine; 5—3-aminoisobutyrate; 6—3-hydroxybutyrate; 7—LDL/VLDL CH2; 8—lactate; 9—alanine; 10—lipids CH2CH2CO; 11—acetate;
12—lipids CH2C=C; 13—N-acetyl-glycoproteins (NAG) NHCOCH3; 14—glutamine; 15—lipids CH2CO; 16—acetoacetate; 17—citrate; 18—lipids
C=CCH2C=C; 19—creatinine; 20—creatine; 21—creatine phosphate; 22—glucose; 23—glycerol of lipids CHOCOR; 24—α glucose; 25—poly-unsaturated
fatty acids (UFA); 26—tyrosine; 27—phenylalanine; 28—histidine; 29—formate. d OPLS-DA score plot for pooled PB and BM samples collected
at diagnosis and typing positive (blue circles; n = 6) or negative (green circles; n = 12) for missense mutations in the IDH1/2 genes. OPLS-DA with
N = 18, CV ANOVA p = 0.059, R2 = 0.93, and Q2 = 0.615. The area under the curve (AUC) of the ROC analysis was 0.86 (p < 0.001). e Metabolites
discriminating AML patients with or without IDH gene mutations. Loadings indicate how much the variables, i.e., the metabolites, contribute
to the model. Shown are loadings with jack-knifed confidence interval. The metabolites significantly contributing to the model were selected
based on variable importance in projection >1 and jack-knifed confidence interval of loadings not crossing the zero line. Positive loading values (blue bars)
indicate the metabolites increased in patients with mutated IDH, while negative values (green bars) are associated with increased levels in patients with
wild-type IDH. Note that the concentration levels of the classical IDH mutation oncometabolite (R)-2-hydroxyglutarate were below the NMR detection
limit and that because of the overlap of the resonances associated to CH2 groups of high-, low- and very low-density lipoproteins (HDL, LDL, VLDL) and
the CH2C=C groups of different lipid molecules it was not possible to establish their specific contribution to the model. f OPLS-DA score plot for pooled
PB and BM samples of patients at diagnosis (tp1H, blue circles; n= 18) vs remission after chemotherapy (pooling samples after induction, tp5H, and after
first consolidation, tp9H, green circles; n= 29). OPLS-DA model with N = 47, CV-ANOVA p= 0.006, R2 = 0.99, and Q2 = 0.671. The AUC of the ROC analysis
was 0.73 (p< 0.001). g Metabolites discriminating AML patients at diagnosis and in remission after chemotherapy. Positive loading values (blue bars)
indicate the metabolites increased in AML patients at tp1H, while negative values (green bars) are associated with increased metabolite levels at tp5H + tp9H

Fig. 2 Metabolic profile of the AML mouse-human model. a Design of the study. b Leukemic cell count (human CD33+, CD45+ values) over time.
c OPLS-DA score plot for healthy mice (tp1M and tp2M; green circles; n = 12) vs mice at tp5M and tp6M (blue circles; n = 12) showing an AML
metabolic signature at an early stage of AML. OPLS-DA model with N = 24, CV-ANOVA p = 0.002, R2 = 0.99, and Q2 = 0.819. The area under the
curve (AUC) of the ROC analysis was 0.96 (p < 0.001). d Metabolites discriminating healthy and human AML-engrafted mice. Positive loading values
(blue bars) indicate the metabolites increased in AML mice, while negative values (green bars) are associated with increased levels in healthy mice
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(Fig. 1a). Peripheral blood (PB), bone marrow (BM), and
urine samples were collected prior, during, and after in-
duction and consolidation CT, resulting in nine time
points (tpH) (Fig. 1b). At the final time point (tp9H), all
patients had achieved complete remission.
Seventy-four PB, 33 BM, and 75 urine samples were

analyzed by NMR spectroscopy (Fig. 1c and Additional
file 1). First, based on results from unsupervised statis-
tical inspection, we decided to pool BM samples with
the respective PB and observed that despite the small
number of cases, supervised orthogonal partial least
squares-discriminant analysis (OPLS-DA) allowed clus-
tering of the samples at diagnosis (tp1H) according to
the presence or absence of mutations in IDH genes
(Fig. 1d, e), supporting the notion that these mutations
have an overall impact on the metabolome [2, 3]. More-
over, OPLS-DA discriminated the metabolic differences
between patients at disease diagnosis and those in remis-
sion (tp5H and tp9H), highlighting 30 metabolites signifi-
cantly contributing to the model (Fig. 1f, g).
To pinpoint the most relevant ones for AML biology,

we integrated our study with a mouse-human AML

model, allowing us to follow the metabolic changes asso-
ciated with disease progression. Six littermate NOD/
SCID γ-chain-null (NSG) mice were infused with 2 × 106

primary AML blasts (from patient #3). PB samples were
collected over time from the same animals before and
after AML infusion for a total of nine time points (tpM)
(Fig. 2a). AML became detectable (blast count > 1 cell/
μl) in the PB at tp5M for all infused mice; thereafter, an
exponential growth started (Fig. 2b). We thus compared
samples before AML infusion (tp1M and tp2M) and in
the exponential phase of disease (tp5M and tp6M).
Possibly due to the lower number of variables present in
the mouse model, OPLS-DA (Fig. 2c) pinpointed only
22 metabolites accounting for AML progression, mainly
involved in pathways related to energy and fatty acid
metabolism (Fig. 2d). The increased lactate level in the
plasma is a typical hallmark of cancer, characterized by
an aerobic glycolytic shift (“Warburg effect”) [1, 12].
Lower plasma levels of cholesterol, lipids, and unsatur-
ated fatty acids were found in AML mice than in healthy
controls, in agreement with previous reports [6, 13, 14],
highlighting an involvement of fatty acid metabolisms in

Fig. 3 Heat maps of human or mouse plasma tracing the trajectory of the seven metabolites associated with AML evolution in both the patients
and mice. a Heat maps of human BM and PB tracing the trajectory of the seven metabolites (averaged normalized metabolite area) associated
with AML evolution in both the mice and patients. b Heat map of mouse PB depicting the trajectory of the seven metabolites (averaged
normalized metabolite area of the six mice) associated with AML evolution in both the mice and patients. Note that leucine, valine, alanine,
citrate, and acetoacetate increased upon AML progression until tp8M and then decreased at tp9M. This reverse effect supported our hypothesis
about a metabolic change due to overall systemic failure at a late stage of disease and not to a specific effect of AML
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AML, possibly related to the demand for lipids and chol-
esterol in tumor proliferation. Also, the increase of
glutamine in AML mice is consistent with cancer since
glutamine is a major carbon and nitrogen source for
tumor cell proliferation [15].
Combining the two longitudinal approaches to trace

AML in patients and mice, we narrowed our screen to
seven metabolites representative of AML tumor burden:
leucine, valine, alanine, glutamine, citrate, acetoacetate,
and lipids CH2CO. We interpreted this set of metabo-
lites as a dynamic fingerprint of AML evolution that
could be followed in a mirror-like trajectory in both
studies (Fig. 3).
Collectively, our results highlight how NMR-based

metabolomics might provide valuable and non-redundant
information on the systemic effects of leukemia, to be
consolidated in larger cohorts, and integrated in more
comprehensive system biology approaches. Although the
limited number of cases investigated in this study
does not allow a meaningful comparison to previous
reports [6, 7], the technical robustness and reproduci-
bility of NMR, together with the minimal sample ma-
nipulations and invasiveness of this technique, appear
well suited to perform longitudinal studies in clinical set-
tings. Moreover, we first provide experimental evidence
on how patient-derived xenografts can be integrated into
metabolomic studies, complementing and narrowing the
screening of clinically relevant metabolites.

Additional file

Additional file 1: Supplementary Methods, Results and Figures. (PDF 966 kb)
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