103 research outputs found

    Air quality biomonitoring through Olea europaea L.: The study case of “Land of pyres”

    Get PDF
    The “Land of pyres”, namely “La Terra dei Fuochi”, is an area of Campania region (South-Italy), highly inhabited and comprises between the Provinces of Naples and Caserta, sadly known worldwide for the criminal activities related to the illegal waste disposal and burning. These fires, concomitantly with traffic emissions, might be the source of potential toxic element (PTE) dangerous for the human health and causing pathologies. In the framework of Correlation Health–Environment project, funded by the Campania region, eight municipalities (of area “Land of pyres”) and three remote sites have been bio-monitored using the olive (Olea europaea L.) plants as biomonitors. Leaves of olive plants were collected in each assayed municipality and the concentration of 11 metal(loid)s was evaluated by means of ICP-OES. Our findings revealed that the air of these municipalities was limitedly contaminated by PTE; in fact, only Sb, Al and Mn were detected in the olive leaves collected in some of the assayed municipalities and showed a high enrichment factors (EC) manly due, probably, to the vehicular traffic emissions. Furthermore, the concentrations of the other assayed PTEs were lower than those of Sb, Al and Mn. For these reasons we suppose that their emissions in the troposphere have been and are limited, and they mainly have a crustal origin. Even if our data are very comforting for those urban area, regarded by many as one of the most contaminated one in Italy, a great environment care, in any case, is always needed

    Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: biochemical and molecular aspects

    Get PDF
    Poplar is a suitable species for phytoremediation, able to tolerate high concentrations of heavy metals (HMs). Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the roots of most land plants; they improve nutrient uptake and enhance phytoextraction of HMs while alleviating stress in the host plant. This review summarizes previous results from field and greenhouse studies conducted by us and dealing with this topic. In a field trial on a highly Zn- and Cu-contaminated site, differences in plant survival and growth were observed among 168 clones originating from natural populations of Populus alba L. and Populus nigra L. from northern Italy. After two and a half years from planting, the density, activity and metabolic versatility of the culturable fraction of the soil bacteria in the HM-polluted field was higher in the soil close to where larger poplar plants were growing, in spite of comparable HM concentrations recorded in these soils. One well-performing clone of P. alba (AL35), which accumulated a higher concentration of both metals and had high foliar polyamine (PA) levels, was used for further investigation. In a greenhouse study, AL35 cuttings pre-inoculated with AMF (Glomus mosseae or Glomus intraradices) and then transferred to pots containing soil, collected from the HM-polluted site, displayed growth comparable to that of controls grown on unpolluted soil, in spite of higher Cu and Zn accumulation. Such plants also showed an overall up-regulation of metallothionein (MT) and PA biosynthetic genes, together with increased PA levels. A genome-wide transcriptomic (cDNA-AFLP) analysis allowed the identification of a number of genes, mostly belonging to stress-related functional categories of defense and secondary metabolism, that were differentially regulated in mycorrhizal vs. non mycorrhizal plants. A proteomic analysis revealed that, depending on sampling time, changes in protein profiles were differentially affected by AMF and/or HMs. It is concluded that soil-borne microorganisms affect plant performance on HM-polluted soil. In particular, mycorrhizal plants exhibited increased capacity for phytostabilization of HMs, together with improved growth. Their greater stress tolerance may derive from the protective role of PAs, and from the strong modulation in the expression profiles of stress-related genes and proteins

    Effects of compost amendment on glycophyte and halophyte crops grown on saline soils: Isolation and characterization of rhizobacteria with plant growth promoting features and high salt resistance

    Get PDF
    Soil salinization and desertification due to climate change are the most relevant challenges for the agriculture of the 21st century. Soil compost amendment and plant growth promoting rhizobacteria (PGP-R) are valuable tools to mitigate salinization and desertification impacts on agricultural soils. Selection of novel halo/thermo-tolerant bacteria from the rhizosphere of glicophytes and halophytes, grown on soil compost amended and watered with 150/300 mM NaCl, was the main objective of our study. Beneficial effects on the biomass, well-being and resilience, exerted on the assayed crops (maize, tomato, sunflower and quinoa), were clearly observable when soils were amended with 20% compost despite the very high soil electric conductivity (EC). Soil compost amendment not only was able to increase crop growth and biomass, but also their resilience to the stress caused by very high soil EC (up to 20 dS m 121 ). Moreover, compost amendment has proved itself a valuable source of highly halo-(4.0 M NaCl)/thermo tolerant rhizobacteria (55\u25e6C), showing typical PGP features. Among the 13 rhizobacterial isolates, molecularly and biochemically characterized, two bacterial strains showed several biochemical PGP features. The use of compost is growing all around the world reducing considerably for farmers soil fertilization costs. In fact, only in Italy its utilization has ensured, in the last years, a saving of 650 million euro for the farmers, without taking into account the environment and human health benefits. Furthermore, the isolation of halo/thermo-tolerant PGPR strains and their use will allow the recovery and cultivation of hun-dreds of thousands of hectares of saline and arid soils now unproductive, making agriculture more respectful of agro-ecosystems also in view of upcoming climate change

    Genetic structure and introgression in riparian populations of Populus alba L.

    Get PDF
    White poplar (Populus alba) is a widespread species of the northern hemisphere. Introgressed populations or hybrid zones with the related species of the European aspen (Populus tremula) have been suggested as potential venues for the identification of functionally important variation for germplasm conservation, restoration efforts and tree breeding. Data on the genetic diversity and structure of introgressed P. alba are available only for sympatric populations from central Europe. Here, clonality, introgression and spatial genetic patterns were evaluated in three riparian populations of P. alba along the Ticino, Paglia-Tevere and Cesano river drainages in Italy. Samples of all three populations were typed for five nuclear microsatellite markers and 137 polymorphic amplified fragment length polymorphisms. Microsatellite-based inbreeding co-efficients (FIS) were significantly positive in all three populations. Genetic diversity was consistently highest in Ticino, the population with the highest level of introgression from P. tremula. Population differentiation (FST) was low between the Ticino valley in northern Italy and the Cesano valley in central Italy and between the central Italian populations of Cesano and Paglia-Tevere, consistent with a role of the Appenine mountain range as a barrier to gene flow between adjacent drainage areas. Introgression was not the primary determinant of within-population spatial genetic structure (SGS) in the studied populations

    Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis

    Get PDF
    Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein

    Exploring the crop epigenome: a comparison of DNA methylation profiling techniques

    Get PDF
    Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method
    corecore