134 research outputs found

    Environmental DNA metabarcoding reveals the effects of seafloor litter and trawling on marine biodiversity

    Get PDF
    Environmental DNA (eDNA) techniques are emerging as promising tools for monitoring marine communities. However, they have not been applied to study the integrated effects of anthropogenic pressures on marine biodiversity. This study examined the relationships between demersal community species composition, key environmental features, and anthropogenic impacts such as fishing effort and seafloor litter using eDNA data in the central Tyrrhenian Sea. The results indicated that both fishing effort and seafloor litter influenced species composition and diversity. The adaptive traits of marine species played a critical role in their response to debris accumulation and fishing. Mobile species appeared to use relocation strategies, while sessile species showed flexibility in the face of disturbance. Epibiotic species relied on passive transport. The use of eDNA-based methods is a valuable resource for monitoring anthropogenic impacts during scientific surveys, enhancing our ability to monitor marine ecosystems and more effectively assess the effects of pollution

    Pleural mesothelioma in a nine-month-old dog

    Get PDF
    This paper reports on an unusual case of pleural epitheloid mesothelioma in a nine-month-old male, mixed breed dog. The dog was presented in-extremis and, on post mortem examination, multiple, exophytic, frequently pedunculated, yellowish-red, soft to firm masses ranging from 3 mm to 6 cm in diameter were diffusely distributed over, and attached to, the pericardial and parietal pleural surfaces. Microscopically, these masses consisted of round to partially polygonalshaped, anaplastic cells with minimal cytoplasm and hyperchromatic nuclei covering papillomatous projections or as part of more densely cellular masses. A supporting fibrovascular stroma and mitotic figures were also evident. Constituent tumour cells were labeled positively with antibodies against both vimentin and cytokeratin. In contrast, the same cells exhibited equivocal labeling with an antibody directed against calretinin antigen and did not label with antibodies against carcinoembryonic antigen (CEA) and milk fat globule-related antigen (MFGRA). Such tumours are rare in dogs, particularly in such a young animal

    TORCH pattern recognition and particle identification performance

    Get PDF
    The TORCH detector aims to provide K/π (K/p) separation up to a momentum of about 10 (15) [Formula presented] by measuring their time-of-flight at the LHCb detector. Prompt Cherenkov photons are produced in a quartz radiator bar of 10 mm thickness, and propagated via total internal reflection to the periphery of the detector, where they are focused onto an array of microchannel plate photomultipliers that measure the photon arrival time and position. Pattern recognition techniques are used to compare the likelihood that the detector image is due to a given particle hypothesis. Good performance is obtained even for very high detector occupancies

    Test-beam performance of a TORCH prototype module

    Get PDF
    The TORCH time-of-flight detector is designed to provide a 15 ps timing resolution for charged particles, resulting in K/p (p/K) particle identification up to momentum of about 10 (15) GeV/c over a 10 m flight distance. Cherenkov photons, produced in a quartz plate of 10 mm thickness, are focused onto an array of micro-channel plate photomultipliers (MCP-PMTs) which measure the photon arrival times and spatial positions. A TORCH demonstrator module instrumented with a customised MCP-PMTs has been tested at the CERN PS. The useful implementation for the particle identification in the LHCb experiment requires single-photon time resolution of 70 ps. The timing performance and photon yields have been measured as a function of beam position in the radiator, giving measurements which are approaching the required resolution. A possible TORCH design of the particle identification system in the LHCb experiment has been simulated and its potential for high luminosity running has been evaluated

    The TORCH time-of-flight detector

    Get PDF
    TORCH is a large-area time-of-flight (ToF) detector, proposed for the Upgrade-II of the LHCb experiment. It will provide charged hadron identification over a 2–20 GeV/c momentum range, given a 9.5m flight distance from the LHC interaction point. To achieve this level of performance, a 15ps timing resolution per track is required. A TORCH prototype module having a 1250×660×10mm3 fused-silica radiator plate and equipped with two MCP-PMTs has been tested in a 8GeV/c CERN test-beam. Single-photon time resolutions of between 70–100ps have been achieved, dependent on the beam position in the radiator. The measured photon yields agree with expectations

    Performance of a prototype TORCH time-of-flight detector

    Get PDF
    TORCH is a novel time-of-flight detector, designed to provide charged particle identification of pions, kaons and protons in the momentum range 2–20 GeV/c over a 9.5 m flight path. A detector module, comprising a 10 mm thick quartz plate, provides a source of Cherenkov photons which propagate via total internal reflection to one end of the plate. Here, the photons are focused onto an array of custom-designed Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMTs) which measure their positions and arrival times. The target time resolution per photon is 70 ps which, for 30 detected photons per charged particle, results in a 10–15 ps time-of-flight resolution. A 1.25 m length TORCH prototype module employing two MCP-PMTs has been developed, and tested at the CERN PS using a charged hadron beam of 8 GeV/c momentum. The construction of the module, the properties of the MCP-PMTs and the readout electronics are described. Measurements of the collected photon yields and single-photon time resolutions have been performed as a function of particle entry points on the plate and compared to expectations. These studies show that the performance of the TORCH prototype approaches the design goals for the full-scale detector

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Test of lepton universality in bs+b \rightarrow s \ell^+ \ell^- decays

    Get PDF
    The first simultaneous test of muon-electron universality using B+K++B^{+}\rightarrow K^{+}\ell^{+}\ell^{-} and B0K0+B^{0}\rightarrow K^{*0}\ell^{+}\ell^{-} decays is performed, in two ranges of the dilepton invariant-mass squared, q2q^{2}. The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb1\mathrm{fb}^{-1}. Each of the four lepton universality measurements reported is either the first in the given q2q^{2} interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-046.html (LHCb public pages

    Precision measurement of CP\it{CP} violation in the penguin-mediated decay Bs0ϕϕB_s^{0}\rightarrow\phi\phi

    Get PDF
    A flavor-tagged time-dependent angular analysis of the decay Bs0ϕϕB_s^{0}\rightarrow\phi\phi is performed using pppp collision data collected by the LHCb experiment at % at s=13\sqrt{s}=13 TeV, the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The CP\it{CP}-violating phase and direct CP\it{CP}-violation parameter are measured to be ϕssˉs=0.042±0.075±0.009\phi_{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 rad and λ=1.004±0.030±0.009|\lambda|=1.004\pm 0.030 \pm 0.009 , respectively, assuming the same values for all polarization states of the ϕϕ\phi\phi system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using pppp collisions at center-of-mass energies of 7 and 8 TeV, yielding ϕssˉs=0.074±0.069\phi_{s\bar{s}s} = -0.074 \pm 0.069 rad and lambda=1.009±0.030|lambda|=1.009 \pm 0.030. This is the most precise study of time-dependent CP\it{CP} violation in a penguin-dominated BB meson decay. The results are consistent with CP\it{CP} symmetry and with the Standard Model predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-001.html (LHCb public pages

    Observation of a resonant structure near the Ds+DsD_s^+ D_s^- threshold in the B+Ds+DsK+B^+\to D_s^+ D_s^- K^+ decay

    Get PDF
    An amplitude analysis of the B+Ds+DsK+B^+\to D_s^+ D_s^- K^+ decay is carried out to study for the first time its intermediate resonant contributions, using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. A near-threshold peaking structure, referred to as X(3960)X(3960), is observed in the Ds+DsD_s^+ D_s^- invariant-mass spectrum with significance greater than 12 standard deviations. The mass, width and the quantum numbers of the structure are measured to be 3956±5±103956\pm5\pm10 MeV, 43±13±843\pm13\pm8 MeV and JPC=0++J^{PC}=0^{++}, respectively, where the first uncertainties are statistical and the second systematic. The properties of the new structure are consistent with recent theoretical predictions for a state composed of ccˉssˉc\bar{c}s\bar{s} quarks. Evidence for an additional structure is found around 4140 MeV in the Ds+DsD_s^+ D_s^- invariant mass, which might be caused either by a new resonance with the 0++0^{++} assignment or by a J/ψϕDs+DsJ/\psi \phi\leftrightarrow D_s^+ D_s^- coupled-channel effect.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-018.html (LHCb public pages
    corecore