111 research outputs found

    Structure-Sensitive Mechanism of Nanographene Failure

    Full text link
    The response of a nanographene sheet to external stresses is considered in terms of a mechanochemical reaction. The quantum chemical realization of the approach is based on a coordinate-of-reaction concept for the purpose of introducing a mechanochemical internal coordinate (MIC) that specifies a deformational mode. The related force of response is calculated as the energy gradient along the MIC, while the atomic configuration is optimized over all of the other coordinates under the MIC constant-pitch elongation. The approach is applied to the benzene molecule and (5, 5) nanographene. A drastic anisotropy in the microscopic behavior of both objects under elongation along a MIC has been observed when the MIC is oriented either along or normally to the C-C bonds chain. Both the anisotropy and high stiffness of the nanographene originate at the response of the benzenoid unit to stress.Comment: 19 pages, 7 figures 1 tabl

    Strong interfacial exchange field in a heavy metal/ferromagnetic insulator system determined by spin Hall magnetoresistance

    Full text link
    Spin-dependent transport at heavy metal/magnetic insulator interfaces is at the origin of many phenomena at the forefront of spintronics research. A proper quantification of the different interfacial spin conductances is crucial for many applications. Here, we report the first measurement of the spin Hall magnetoresistance (SMR) of Pt on a purely ferromagnetic insulator (EuS). We perform SMR measurements in a wide range of temperatures and fit the results by using a microscopic model. From this fitting procedure we obtain the temperature dependence of the spin conductances (GsG_s, GrG_r and GiG_i), disentangling the contribution of field-like torque (GiG_i), damping-like torque (GrG_r), and spin-flip scattering (GsG_s). An interfacial exchange field of the order of 1 meV acting upon the conduction electrons of Pt can be estimated from GiG_i, which is at least three times larger than GrG_r below the Curie temperature. Our work provides an easy method to quantify this interfacial spin-splitting field, which play a key role in emerging fields such as superconducting spintronics and caloritronics, and topological quantum computation.Comment: 15 pages, 3 figures, Supporting information included at the en

    In-situ temperatures and thermal properties of the East Siberian Arctic shelf sediments: Key input for understanding the dynamics of subsea permafrost

    Get PDF
    Significant reserves of methane (CH4) are held in the Arctic shelf, but the release of CH4 to the overlying ocean and, subsequently, to the atmosphere has been believed to be restricted by impermeable subsea permafrost, which has sealed the upper sediment layers for thousands of years. Our studies demonstrate progressive degradation of subsea permafrost which controls the scales of CH4 release from the sediment into the water-atmospheric system. Thus, new knowledge about the thermal state of subsea permafrost is crucial for better understanding of the permafrost -hydrate system and associated CH4 release from the East Siberian Arctic Shelf (ESAS) – the broadest and shallowest shelf in the World Ocean, which contains about 80% of subsea permafrost and giant pools of hydrates. Meanwhile, the ESAS, still presents large knowledge gaps in many aspects, especially with respect to subsea permafrost distribution and physical properties of bottom sediments. New field data show that the ESAS has an unfrozen (ice-free) upper sediment layer, which in-situ temperature is −1.0 to −1.8 °C and 0.6оС above the freezing point. On one hand, these cold temperature patterns may be related to the presence of subsea permafrost, which currently primarily occurs in the part of the ESAS that is shallower than 100 m, while ice-bearing sediments may also exist locally under deeper water in the Laptev Sea. On the other hand, the negative bottom sediment temperatures of −1.8 °C measured on the Laptev Sea continental slope sediments underlying water columns as deep as down to 330 m may result from dissociation of gas hydrates or possibly from dense water cascading down from the shelf. In contrast, data collected on recent expeditions in the northern Laptev shelf, zones of warmer bottom temperatures are coinciding with methane seeps, likely induced by seismic and tectonic activity in the area. These warm temperatures are not seen in the East Siberian Sea area, not even in areas of methane seeps, yet with little seismic activity. The thermal conductivity and heat capacity of bottom sediments recorded in the database of thermal parameters for the ESAS areas mainly depend on their lithification degree (density or porosity), moisture content, and particle size distribution. The thermal conductivity and heat capacity average about 1.0 W/(m·K) and 2900 kJ/(m3·K), with ±20% and ±10% variance, respectively, in all sampled Arctic sediments to a sub-bottom interval of 0–0.5 m

    Element redistribution along hydraulic and redox gradients of low-centered polygons, Lena Delta, northern Siberia

    Get PDF
    Wetland soils affected by permafrost are extensive in subarctic and arctic tundra. However, this fact does not imply these soils have been sufficiently investigated. In particular, studies of element translocation processes are scarce. This study was conducted (i) to determine the relationship between water and redox regimes in wetland soils in the Siberian tundra, and (ii) to investigate their influence on the distribution of redox sensitive and associate elements (Mn, Fe, P). Major geomorphic units were chosen (microhigh, polygon rim and slope; microlow, polygon center) from two low-centered polygons in the Lena Delta. Within polygons, redox potential, permafrost, and water level were measured during summer in 1999 and 2000 and (related) compared with element distribution. Manganese, Fe, and P accumulations were preferentially observed in aerobic microhighs. Anaerobic conditions in the microlows lead to a mobilization of Mn, Fe, and P. The elements migrate via water and are immobilized at the microhigh, which acts as an oxidative barrier. The element pattern, indicating an upward flux via water along redox gradients, is explained by higher evapotranspiration from soils and vegetation of the microhighs (Typic Aquiturbel) compared with soils and vegetation of the microlows (Typic Historthel). However, in further research this upward transport should be validated using labeled elements

    СИНХРОННАЯ ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ И ФУНКЦИОНАЛЬНАЯ МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ В ПРЕДОПЕРАЦИОННОЙ ПОДГОТОВКЕ ПАЦИЕНТОВ С ФАРМАКОРЕЗИСТЕНТНОЙ ЭПИЛЕПСИЕЙ. МЕТОДОЛОГИЯ И ОПЫТ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ

    Get PDF
    Approximately 30% of patients with symptomatic epilepsy have pharmacoresistant seizures refractory to medical therapy. The most effective treatment modality is microsurgical resection of whole epileptogenic zone, not only visible on MRI lesion. However, in some cases patients still have seizures after operation. We provide a method of simultaneous EEG-fMRI to more accurate localization of epileptogenic zone after failed surgery. Here we present our experience of gamma knife stereotactic radiosurgery for patient harboring mesial temporal lobe epilepsy using EEG-fMRI for confirmation of residual epileptogenic zone.Около 30% пациентов с  симптоматической эпилепсией проявляют фармакорезистентность  — неэффективность многокомпонентного медикаментозного лечения. Наиболее эффективным методом радикального лечения симптоматической эпилепсии является микрохирургическое удаление не только видимого при магнитно-резонансной томографии патологического очага, но и всей эпилептогенной зоны. Тем не менее в некоторых случаях возникает рецидив заболевания. Для более точного определения эпилептогенной зоны в послеоперационном периоде мы предлагаем использовать метод синхронной электроэнцефалографии и функциональной магнитнорезонансной томографии и  описываем особенности его рутинного применения. Клиническое наблюдение демонстрирует возможность успешного радиохирургического лечения на  аппарате Leksell Gamma Knife Perfexion пациента с  рецидивом мезиальной височной эпилепсии после хирургического лечения, для чего использовали данные о локализации эпилептогенного очага, полученные с помощью описанного метода

    Conducting linear chains of sulphur inside carbon nanotubes

    Get PDF
    Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (∼800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at ∼450-650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding ∼90 GPa to become metallic

    Gas and Possible Gas Hydrates in the Permafrost of Bovanenkovo Gas Field, Yamal Peninsula, West Siberia

    Get PDF
    corecore