74 research outputs found
The ICO Approach to Quantifying and Restoring Forest Spatial Pattern: Implementation Guide
This document is intended as a “How To” guide for managers and stakeholders wishing to implement the Individual, Clumps, and Openings (ICO) method for silvicultural prescriptions and/or monitoring. This guide is organized into stand-alone chapters. Managers should read and use chapters as they find useful to their own needs.https://scholarworks.umt.edu/ico/1002/thumbnail.jp
Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California
Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions.
Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on ‘‘how much and where?” will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process
Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California
Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions.
Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on ‘‘how much and where?” will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process
Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility
Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes
Gateways to the FANTOM5 promoter level mammalian expression atlas
The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.riken.jp/5/). This resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0560-6) contains supplementary material, which is available to authorized users
Restoring Pattern, Structure, and Function in Dry Forests: the ICO Approach
Managers and stakeholders across the Interior West are increasingly focused on managing for the uneven-age, mosaic patterns of individual trees, tree clumps, and openings (ICO) associated with frequent fire forests. These stand level patterns influence key processes and functions such as fire behavior, drought resistance, snow retention, wildlife habitat, and stand development. Until recently, methods to incorporate targets for spatial 7
pattern into treatments were not well developed. To inform such methods, we reconstructed and stemmaped 55 x 4ha historical reference sites from frequent fire forests across interior Washington and Oregon. Reference sites show a definable envelope of patterns that can serve as targets for treatments. We developed a silvicultural tool that incorporates spatial pattern targets from reference stands into prescriptions. Results from treatment implementation indicate that explicit targets for spatial variability, in the form of clumping and opening targets, can be achieved in a practical, operational-scale manner. We also developed field based and LiDAR monitoring tools to compare spatial pattern from any treatment to reference conditions. Results from monitoring of 38 treatments, including prescribed fire, show that strict basal area and spacing based treatments do not restore reference spatial patterns, while approaches with explicit pattern objectives generally do
Quantifying and Restoring Stand-Level Spatial Pattern in Dry Forests of the Eastern Washington Cascades
Thesis (Ph.D.)--University of Washington, 2013There is increasing evidence that spatial heterogeneity at multiple scales is a critical component of ecosystem resilience and adaptive capacity. In frequent-fire pine and mixed conifer forests in the western US, pre-settlement era forests were complex mosaics of individual trees, tree clumps, and openings. There is a broad scientific consensus that restoration treatments should seek to restore these mosaic patterns as these reference forests were adapted to frequent-fire and shifting climatic conditions. Yet, methods to quantify and incorporate spatial reference information into restoration treatments are not widely used. In addition, targets from reference conditions must be critically evaluated in light of climate change. In this dissertation, I develop a new set of spatial metrics to quantify within-stand pattern in terms of widely spaced individual trees, tree clumps, and openings (ICO). Within 0.5 ha tree neighborhoods, I found evidence that a definable range and distribution, or envelope, of pattern and structure was present. This envelope ranged from low density patterns with few clumps and high opening levels, to patterns with a mid-range of density and varying levels of clumping, to high density, highly clumped patterns. The envelope was constrained by an upper limit of clump size, maximum density levels well below site potential, and the presence of at least some clumping in all plots. Across 3 x 6ha plots, tree neighborhood patterns of clumps and openings were spatially dependent. Aggregations of large clumps formed sub-patches that occupied 7-16% of plot area. A gradient of low to moderate density with low levels of clumping was found on the remainder. A silvicultural approach to translating reference patterns into restoration prescriptions and monitoring protocols was also developed and applied in a case study. Treatments using this ICO approach resulted in a distribution of tree clumps and openings within the range of reference envelopes. I also developed a method based on climatic water balance parameters, downscaled climate projections, and plant associations to assess historical reference sites in the context of projected future climate and identify climate analogue reference conditions
ICO-Mark version 1.3
ICO Mark is a tablet- and phone-based application (app) developed for forest managers and forestry field crews to spatially monitor and map forest structure. ICO Mark relies on the Individuals-Clumps- Openings approach to characterizing dry forest spatial patterning, where forests are composed of varying proportions and sizes of individual trees, clumps of trees, and treeless openings. ICO Mark allows users to track individual trees and clumps for both marking pre-harvest, and for monitoring conditions post-harvest.https://scholarworks.umt.edu/ico/1000/thumbnail.jp
Data_Sheet_1_Mapping with height and spectral remote sensing implies that environment and forest structure jointly constrain tree community composition in temperate coniferous forests of eastern Washington, United States.docx
Maps of species composition are important for assessing a wide range of ecosystem functions in forested landscapes, including processes shaping community structure at broader (e.g., climate) and finer (e.g., disturbance) scales. Incorporating recently available remotely sensed datasets has the potential to improve species composition mapping by providing information to help predict species presence and relative abundance. Using USDA Forest Service Forest Inventory and Analysis plot data and the gradient nearest neighbor imputation modeling approach in eastern Washington, USA, we developed tree species composition and structure maps based on climate, topography, and two sources of remote sensing: height from digital aerial photogrammetry (DAP) of pushbroom aerial photography and Sentinel-2 multispectral satellite imagery. We tested the accuracy of these maps based on their capacity to predict species occurrence and proportional basal area for 10 coniferous tree species. In this study region, climate, topography, and location explained much of the species occurrence patterns, while both DAP and Sentinel-2 data were also important in predicting species proportional basal area. Overall accuracies for the best species occurrence model were 68–92% and R2 for the proportional basal area was 0.08–0.55. Comparisons of model accuracy with and without remote sensing indicated that adding some combination of DAP metrics and/or Sentinel-2 imagery increased R2 for the proportional basal area by 0.25–0.45, but had minor and sometimes negative effects on model skill and accuracy for species occurrence. Thus, species ranges appear most strongly constrained by environmental gradients, but abundance depends on forest structure, which is often determined by both environment and disturbance history. For example, proportional basal area responses to moisture limitation and canopy height varied by species, likely contributing to regional patterns of species dominance. However, local-scale examples indicated that remotely sensed forest structures representing recent disturbance patterns likely impacted tree community composition. Overall, our results suggest that characterizing geospatial patterns in tree communities across large landscapes may require not only environmental factors like climate and topography, but also information on forest structure provided by remote sensing.</p
- …