984 research outputs found

    Stacking fault-associated polarized surface-emitted photoluminescence from zincblende InGaN/GaN quantum wells

    Get PDF
    Zincblende InGaN/GaN quantum wells offer a potential improvement to the efficiency of green light emission by removing the strong electric fields present in similar structures. However, a high density of stacking faults may have an impact on the recombination in these systems. In this work, scanning transmission electron microscopy and energy-dispersive x-ray measurements demonstrate that one dimensional nanostructures form due to indium segregation adjacent to stacking faults. In photoluminescence experiments these structures emit visible light which is optically polarised up to 86% at 10K and up to 75% at room temperature. The emission redshifts and broadens as the well width increases from 2nm to 8nm. Photoluminescence excitation measurements indicate that carriers are captured by these structures from the rest of the quantum wells and recombine to emit light polarised along the length of these nanostructures

    Hippocrates revisited? Old ideals and new realities

    Get PDF
    Individual genomics has arrived, personal decisions to make use of it are a new reality. What are the implications for the patient–physician relationship? In this article we address three factors that call the traditional concept of confidentiality into question. First, the illusion of absolute data safety, as shown by medical informatics. Second, data sharing as a standard practice in genomics research. Comprehensive data sets are widely accessible. Third, genotyping has become a service that is directly available to consumers. The availability and accessibility of personal health data strongly suggest that the roles in the clinical encounter need to be remodeled. The old ideal of physicians as keepers of confidential information is outstripped by the reality of individuals who decide themselves about the way of using their data

    Photoluminescence efficiency of zincblende InGaN/GaN quantum wells

    Get PDF
    Growing green and amber emitting InGaN/GaN quantum wells in the zincblende, rather than the wurtzite, crystal phase has the potential to improve efficiency. However, optimization of the emission efficiency of these heterostructures is still required to compete with more conventional alternatives. Photoluminescence time decays were used to assess how the quantum well width and number of quantum wells affect the recombination rates, and temperature dependent photoluminescence was used to determine the factors affecting recombination efficiency. The radiative recombination lifetime was found to be approximately 600 ps and to increase weakly with well width, consistent with a change in the exciton binding energy. The relative efficiency at room temperature was found to increase by a factor of five when the number of wells was increased from one to five. Furthermore, the efficiency increased by factor 2.2 when the width was increased from 2.5 to 7.5 nm. These results indicate that thermionic emission is the most important process reducing efficiency at temperatures in excess of 100 K. Moreover, the weak dependence of the rate of radiative recombination on well width means that increasing well thickness is an effective way of suppressing thermionic emission and thereby increasing efficiency in zincblende InGaN/GaN quantum wells, in contrast to those grown in the wurtzite phase

    Association between Changes in Muscle Quality with Exercise Training and Changes in Cardiorespiratory Fitness Measures in Individuals with Type 2 Diabetes Mellitus: Results from the HART-D Study

    Get PDF
    Introduction: Type 2 diabetes mellitus (T2DM) is associated with a reduction in muscle quality. However, there is inadequate empirical evidence to determine whether changes in muscle quality following exercise are associated with improvement in cardiorespiratory fitness (CRF) in individuals with T2DM. The objective of this study was to investigate the association between change in muscle quality following a 9-month intervention of aerobic training (AT), resistance training (RT) or a combination of both (ATRT) and cardiorespiratory fitness (CRF) in individuals with T2DM. Material and Methods A total of 196 participants were randomly assigned to a control, AT, RT, or combined ATRT for a 9-months intervention. The exposure variable was change in muscle quality [(Post: leg muscle strength/leg muscle mass)-[(Pre: leg muscle strength/leg muscle mass)]. Dependent variables were change in CRF measures including absolute and relative VO2peak, and treadmill time to exhaustion (TTE) and estimated metabolic equivalent task (METs). Results Continuous change in muscle quality was independently associated with change in absolute (β = 0.015; p = 0.019) and relative (β = 0.200; p = 0.005) VO2peak, and TTE (β = 0.170; p = 0.043), but not with estimated METs (p > 0.05). A significant trend was observed across tertiles of change in muscle quality for changes in absolute (β = 0.050; p = 0.005) and relative (β = 0.624; p = 0.002) VO2peak following 9 months of exercise training. No such association was observed for change in TTE and estimated METs (p > 0.05). Discussion: The results from this ancillary study suggest that change in muscle quality following exercise training is associated with a greater improvement in CRF in individuals with T2DM. Given the effect RT has on increasing muscle quality, especially as part of a recommended training program (ATRT), individuals with T2DM should incorporate RT into their AT regimens to optimize CRF improvement

    Local variations in gabion structures

    Get PDF
    Gabion structures are widely used for force protection as they enable locally available material to be used, reducing logistical expense. The soil fill within these structures provides the blast and ballistic resistance; hence, any localised variation in the contained soil can potentially lead to reductions in protective capability. Specifically, built gabion structures were monitored in internal and external environments to assess the variation of soil moisture content and density over a full year and with changing weather conditions. The gabions were filled with fine sand according to manufacturer’s instructions. Internal and external moisture content readings were recorded at regular intervals, and a continuously monitoring weather station was installed to collect comparative data. LIDAR scanning was used to record the shape and volume of the gabions to estimate variations in the density of the soil fill. The data indicate that moisture content can vary by over 20% between the top and base of the gabion, and by over 5% from face to face and between readings depending on recent weather conditions, while the core of the gabions remains relatively unaffected. This leads to localised variations in density which can impact on both the ballistic performance and blast resistance of the structure

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    Niche as a determinant of word fate in online groups

    Get PDF
    Patterns of word use both reflect and influence a myriad of human activities and interactions. Like other entities that are reproduced and evolve, words rise or decline depending upon a complex interplay between {their intrinsic properties and the environments in which they function}. Using Internet discussion communities as model systems, we define the concept of a word niche as the relationship between the word and the characteristic features of the environments in which it is used. We develop a method to quantify two important aspects of the size of the word niche: the range of individuals using the word and the range of topics it is used to discuss. Controlling for word frequency, we show that these aspects of the word niche are strong determinants of changes in word frequency. Previous studies have already indicated that word frequency itself is a correlate of word success at historical time scales. Our analysis of changes in word frequencies over time reveals that the relative sizes of word niches are far more important than word frequencies in the dynamics of the entire vocabulary at shorter time scales, as the language adapts to new concepts and social groupings. We also distinguish endogenous versus exogenous factors as additional contributors to the fates of words, and demonstrate the force of this distinction in the rise of novel words. Our results indicate that short-term nonstationarity in word statistics is strongly driven by individual proclivities, including inclinations to provide novel information and to project a distinctive social identity.Comment: Supporting Information is available here: http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0019009.s00
    corecore