Stacking fault-associated polarized surface-emitted photoluminescence from zincblende InGaN/GaN quantum wells

Abstract

Zincblende InGaN/GaN quantum wells offer a potential improvement to the efficiency of green light emission by removing the strong electric fields present in similar structures. However, a high density of stacking faults may have an impact on the recombination in these systems. In this work, scanning transmission electron microscopy and energy-dispersive x-ray measurements demonstrate that one dimensional nanostructures form due to indium segregation adjacent to stacking faults. In photoluminescence experiments these structures emit visible light which is optically polarised up to 86% at 10K and up to 75% at room temperature. The emission redshifts and broadens as the well width increases from 2nm to 8nm. Photoluminescence excitation measurements indicate that carriers are captured by these structures from the rest of the quantum wells and recombine to emit light polarised along the length of these nanostructures

    Similar works