12 research outputs found

    Skin color independent assessment of aging using skin autofluorescence

    Get PDF
    Skin autofluorescence (AF) for the non-invasive assessment of the amount of accumulated tissue Advanced Glycation Endproducts (AGEs) increases with aging. In subjects with darker skin colors, measurements typically result in lower AF values than in subjects with fair skin colors, e.g. due to selective absorption by skin compounds. Our aim was to provide a new method for calculating skin AF, yielding values that are independent of skin color. The deviation of skin AF of healthy subjects with various darker skin types (N = 99) compared to reference values from Caucasians showed to be a function of various parameters that were derived from reflectance and emission spectra in the UV and visible range (adjusted R(2) = 80%). Validation of the new algorithm, based on these findings, in a separate dataset (N = 141) showed that results of skin AF can now be obtained to assess skin AGEs independently of skin colo

    Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration

    No full text
    Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context

    Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration

    No full text
    Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context
    corecore