10 research outputs found

    ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the International Space Station

    Get PDF
    The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station ECOSTRESS) was launched to the International Space Station on June 29, 2018. The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as level‐3 (L3) latent heat flux (LE) data products. These data are generated from the level‐2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear‐sky ET product (L3_ET_PT‐JPL, version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear‐sky instantaneous/time of overpass: r2 = 0.88; overall bias = 8%; normalized RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times of day (ECOSTRESS samples the diurnal cycle), though temperate sites are over‐represented. The 70 m high spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1 km pixels. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for subsequent science that follows using these data

    Synthetic retrieval of hourly net ecosystem exchange using the neural network model with combined MI and GOCI geostationary sensor datasets and ground-based measurements

    No full text
    Net ecosystem carbon dioxide (CO2) exchange (NEE) is a key parameter for understanding the terrestrial plant ecosystems, but it is difficult to monitor or predict over large areas at fine temporal resolutions. In this research, we estimated the hourly NEE using a combination of the integrated neural network (NN) model with geostationary satellite imagery to overcome the limitations of existing daily polar orbiting satellite-derived carbon flux products. Two sets of satellite imageries (i.e. the meteorological imager (MI) and geostationary ocean colour imager (GOCI) aboard communication, ocean, and meteorological satellite (COMS)) and CO2 flux data derived from eddy covariance measurements were used to verify the feasibility of applying hourly geostationary satellite imagery with an NN-based approach for estimating NEE at high temporal resolutions. For the NN model, the optimum neuronal architecture was established using an NN with one hidden layer that was trained using the Levenberg–Marquardt back propagation algorithm. The hourly NEE values estimated in test period from the NN model using the combined COMS MI and GOCI imagery and ground measurements as model inputs were compared with the eddy covariance NEE values from the measurement tower, which yielded reliable statistical agreement. The hourly NEE results from the NNmodel based on COMS MI and GOCI imagery and ground measurement data had the highest accuracy (RMSE = 2.026 ÎŒmol m−2 s−2, R = 0.975), while the root mean square error (RMSE) and the regression coefficient (R) generated by the NN model based on satellite imagery as the sole input variable were relatively lower (RMSE = 3.230 ÎŒmol m−2 s−2, R = 0.952). Although the simulations for the satellite-only NEE were showed as lower accuracy than the NN model that included all input variables, the hourly variations in NEE also appeared to describe its daily growth and development pattern well, indicating the possibility of deriving hourly-based products from the proposed NN model using geostationary satellite data as inputs

    Surface albedo from the geostationary Communication, Ocean and Meteorological Satellite (COMS)/Meteorological Imager (MI) observation system

    No full text
    The surface albedo is an essential climate variable that is considered in many applications used for predicting climate and understanding the mechanisms of climate change. In this study, surface albedo was estimated using a bidirectional reflectance distribution function model based on Communication, Ocean and Meteorological Satellite/Meteorological Imager data. Geostationary orbiting satellite data are suitable for a level 2 product like albedo, which requires a synthetic process to estimate. The authors modified established methods to consider the geometry of the solar-surface-sensor of COMS/MI. Of note, the viewing zenith angle term was removed from the kernel integration used for estimating spectral albedo. Finally, the spectral (narrow) albedo was converted into the broadband albedo with shortwave length (approximately 0.3–2.5 ÎŒm). This study determined conversion coefficients using only one spectral albedo of visible channel. The estimated albedo had a relatively high correlation with Satellite Pour l’Observation de la Terre/Vegetation and low unweighted error values specific for land types or times. The validation results show that estimated albedo has a root mean square error of 0.0134 at Jeju flux site that indicates accuracy similar to that of other satellite-based products
    corecore