5 research outputs found

    Dissociable contributions of mediodorsal and anterior thalamic nuclei in visual attentional performance: a comparison using nicotinic and muscarinic cholinergic receptor antagonists

    Get PDF
    Background: Thalamic subregions mediate various cognitive functions, including attention, inhibitory response control and decision making. Such neuronal activity is modulated by cholinergic thalamic afferents and deterioration of such modulatory signaling has been theorised to contribute to cognitive decline in neurodegenerative disorders. However, the thalamic subnuclei and cholinergic receptors involved in cognitive functioning remain largely unknown. Aims: We investigated whether muscarinic or nicotinic receptors in the mediodorsal thalamus and anterior thalamus contribute to rats’ performance in the five-choice serial reaction time task, which measures sustained visual attention and impulsive action. Methods: Male Long-Evans rats were trained in the five-choice serial reaction time task then surgically implanted with guide cannulae targeting either the mediodorsal thalamus or anterior thalamus. Reversible inactivation of either the mediodorsal thalamus or anterior thalamus were achieved with infusions of the γ-aminobutyric acid-ergic agonists muscimol and baclofen prior to behavioural assessment. To investigate cholinergic mechanisms, we also assessed the behavioural effects of locally administered nicotinic (mecamylamine) and muscarinic (scopolamine) receptor antagonists. Results: Reversible inactivation of the mediodorsal thalamus severely impaired discriminative accuracy and response speed and increased omissions. Inactivation of the anterior thalamus produced less profound effects, with impaired accuracy at the highest dose. In contrast, blocking cholinergic transmission in these regions did not significantly affect five-choice serial reaction time task performance. Conclusions/interpretations: These findings show the mediodorsal thalamus plays a key role in visuospatial attentional performance that is independent of local cholinergic neurotransmission

    Cholinergic Modulation of Visual Attention and Working Memory: Dissociable Effects of Basal Forebrain 192-IgG-saporin Lesions and Intraprefrontal Infusions of Scopolamine

    No full text
    Two experiments examined the effects of reductions in cortical cholinergic function on performance of a novel task that allowed for the simultaneous assessment of attention to a visual stimulus and memory for that stimulus over a variable delay within the same test session. In the first experiment, infusions of the muscarinic receptor antagonist scopolamine into the medial prefrontal cortex (mPFC) produced many omissions but did not impair rats' ability to correctly detect a brief visual stimulus. However, these animals were highly impaired in remembering the location of that stimulus following a delay period, although in a delay-independent manner. In the second experiment, another group of animals with selective 192IgG-saporin lesions of the nucleus basalis magnocellularis (nBM) were not impaired under conditions of low-attentional demand. However, when the stimulus duration was reduced, a significant memory impairment was observed, but similar to the results of the first experiment, the nBM-lesioned animals were not impaired in attentional accuracy, although aspects of attention were compromised (e.g., omissions). These findings demonstrate that (1) cortical cholinergic depletion produces dissociable deficits in attention and memory, depending on the task demands, (2) delay-independent mnemonic deficits produced by scopolamine are probably due to impairments other than simple inattention, and (3) working memory deficits are not simply dependent on attentional difficulties per se. Together, these findings implicate the nBM cortical cholinergic system in both attentional and mnemonic processing
    corecore