335 research outputs found
Dietary energy density and the performance characteristics of growing pigs
Optimal nutritional management of growing pigs is constrained by lack of quantitative information on the response of animals between 30 and 110 kg live weight to dietary energy content. Under 'ideal' conditions modern genotypes appear to adjust feed intake to maintain a constant DE intake over a much wider range of dietary energy concentrations than previously thought (Mullan et al, 1998). However, under commercial pen conditions, voluntary feed intake is lower, pigs respond in terms of both growth rate and feed conversion to dietary DE density considerably above the levels currently thought to maximise biological and economic responses. The present study was designed to provide information on the response of growing pigs to dietary energy content under ideal and commercial housing conditions for two growth periods 30-60kg liveweight and 60-100kg liveweight. The results of the pigs kept under individual (ideal) housed conditions were consistent with the literature in that they adjusted their voluntary feed intake with digestible energy density to maintain a constant energy intake. The results of the pigs kept in groups (commercial) housing conditions tended to increase their daily energy intake as the energy density of the feed increased. This increase in energy intake improved the growth rate of the pigs and increased the fat deposition of those pigs. Economic analysis of the experiments involving pigs in groups indicates that formulating diets to a least cost per megajoule of digestible energy is not the most profitable point to set the digestible energy density. Modelling programs need to be used to determine where the least cost per unit of growth of the pig occurs. This is the most economical digestible energy density to formulate too. This will have major impact on the cost of production of piggery operations as the cost of energy is the single most important parameter in the cost of producing a pig
The influence of microsatellite polymorphisms in sex steroid receptor genes ESR1, ESR2 and AR on sex differences in brain structure.
The androgen receptor (AR), oestrogen receptor alpha (ESR1) and oestrogen receptor beta (ESR2) play essential roles in mediating the effect of sex hormones on sex differences in the brain. Using Voxel-based morphometry (VBM) and gene sizing in two independent samples (discovery n = 173, replication = 61), we determine the common and unique influences on brain sex differences in grey (GM) and white matter (WM) volume between repeat lengths (n) of microsatellite polymorphisms AR(CAG)n, ESR1(TA)n and ESR2(CA)n. In the hypothalamus, temporal lobes, anterior cingulate cortex, posterior insula and prefrontal cortex, we find increased GM volume with increasing AR(CAG)n across sexes, decreasing ESR1(TA)n across sexes and decreasing ESR2(CA)n in females. Uniquely, AR(CAG)n was positively associated with dorsolateral prefrontal and orbitofrontal GM volume and the anterior corona radiata, left superior fronto-occipital fasciculus, thalamus and internal capsule WM volume. ESR1(TA)n was negatively associated with the left superior corona radiata, left cingulum and left inferior longitudinal fasciculus WM volume uniquely. ESR2(CA)n was negatively associated with right fusiform and posterior cingulate cortex uniquely. We thus describe the neuroanatomical correlates of three microsatellite polymorphisms of steroid hormone receptors and their relationship to sex differences
Inhibiting decoherence via ancilla processes
General conditions are derived for preventing the decoherence of a single
two-state quantum system (qubit) in a thermal bath. The employed auxiliary
systems required for this purpose are merely assumed to be weak for the general
condition while various examples such as extra qubits and extra classical
fields are studied for applications in quantum information processing. The
general condition is confirmed with well known approaches towards inhibiting
decoherence. A novel approach for decoherence-free quantum memories and quantum
operations is presented by placing the qubit into the center of a sphere with
extra qubits on its surface.Comment: pages 8, Revtex
Temporal structure of stimulated-Brillouin-scattering reflectivity considering transversal-mode development
The time-resolved reflectivity of optical phase conjugation by stimulated Brillouin scattering ~SBS! is investigated both theoretically and experimentally. A three-dimensional and transient model of SBS is developed to compare the experimental and theoretical results. Noise initiation of the SBS process is included in the model to simulate the shot-to-shot variation in the reflectivity and the Stokes temporal profile.Shahraam Afshaarvahid, Axel Heuer, Ralf Menzel, and Jesper Munc
Selenium uptake and associated anti-oxidant properties in Pleurotus fossulatus cultivated on wheat straw from seleniferous fields
The present study was carried out to examine the antioxidant activity in oyster mushroom cultivated on selenium (Se) rich substrate. Pleurotus fossulatus was cultivated on Se-rich wheat straw collected from the seleniferous belt of Punjab (India) and its potential to accumulate Se from substrate was examined. Using different assay systems the modulations in the anti-oxidant profile of Se enriched mushroom was studied in comparison to the mushrooms cultivated on normal straw. The oyster mushrooms were observed to potentially mobilize Se from Se-rich substrates to fruiting bodies, resulting in significantly high uptake (37.2±0.6 μg g−1) as compared to control (3.57±0.53 mg g−1). The antioxidant activity, as determined by various assays, such as reducing power, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging, and metal chelating activity, was higher in the experimental mushrooms when compared to control. The results obtained demonstrate that Se-fortified mushrooms through cultivation on straw containing organic forms of Se can be considered as natural and effective dietary supplements of organic Se for humans. The present study proposes the use of Se-rich agricultural residues as substrates for mushroom cultivation for human and livestock supplementation
Electromagnetic wave propagation in rain and polarization effects
This paper summarizes our study on microwave and millimeter-wave propagation in rain with special emphasis on the effects of polarization. Starting from a recount of our past findings, we will discuss developments with these and how they are connected with subsequent research
Analysis of a wild mouse promoter variant reveals a novel role for FcγRIIb in the control of the germinal center and autoimmunity.
Genetic variants of the inhibitory Fc receptor FcγRIIb have been associated with systemic lupus erythematosus in humans and mice. The mechanism by which Fcgr2b variants contribute to the development of autoimmunity is unknown and was investigated by knocking in the most commonly conserved wild mouse Fcgr2b promoter haplotype, also associated with autoimmune-prone mouse strains, into the C57BL/6 background. We found that in the absence of an AP-1-binding site in its promoter, FcγRIIb failed to be up-regulated on activated and germinal center (GC) B cells. This resulted in enhanced GC responses, increased affinity maturation, and autoantibody production. Accordingly, in the absence of FcγRIIb activation-induced up-regulation, mice developed more severe collagen-induced arthritis and spontaneous glomerular immune complex deposition. Our data highlight how natural variation in Fcgr2b drives the development of autoimmune disease. They also show how the study of such variants using a knockin approach can provide insight into immune mechanisms not possible using conventional genetic manipulation, in this case demonstrating an unexpected critical role for the activation-induced up-regulation of FcγRIIb in controlling affinity maturation, autoantibody production, and autoimmunity
Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs
Substance abuse and addiction are the most costly of all the neuropsychiatric disorders. In the last decades, much progress has been achieved in understanding the effects of the drugs of abuse in the brain. However, efficient treatments that prevent relapse have not been developed. Drug addiction is now considered a brain disease, because the abuse of drugs affects several brain functions. Neurological impairments observed in drug addicts may reflect drug-induced neuronal dysfunction and neurotoxicity. The drugs of abuse directly or indirectly affect neurotransmitter systems, particularly dopaminergic and glutamatergic neurons. This review explores the literature reporting cellular and molecular alterations reflecting the cytotoxicity induced by amphetamines, cocaine and opiates in neuronal systems. The neurotoxic effects of drugs of abuse are often associated with oxidative stress, mitochondrial dysfunction, apoptosis and inhibition of neurogenesis, among other mechanisms. Understanding the mechanisms that underlie brain dysfunction observed in drug-addicted individuals may contribute to improve the treatment of drug addiction, which may have social and economic consequences.http://www.sciencedirect.com/science/article/B6SYS-4S50K2J-1/1/7d11c902193bfa3f1f57030572f7034
Detection of mutations within exons 4 to 8 of the p53 tumor suppressor gene in canine mammary glands
1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.
HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples
- …