56,241 research outputs found
Effects of thermal conduction in sonoluminescence
We show by numerical hydrodynamic calculations that there are two important effects of thermal conduction in sonoluminescence: (i) the bubble remains close to being isothermal during the expansion phase; and (ii) a cold, dense layer of air is formed at the bubble wall during the contraction phase. These conclusions are not sensitive to the particular equation of state used, although details of the dynamical evolution of the bubble are
COBE nonspinning attitude propagation
The Cosmic Background Explorer (COBE) spacecraft will exhibit complex attitude motion consisting of a spin rate of approximately -0.8 revolution per minute (rpm) about the x-axis and simultaneous precession of the spin axis at a rate of one revolution per orbit (rpo) about the nearly perpendicular spacecraft-to-Sun vector. The effect of the combined spinning and precession is to make accurate attitude propagation difficult and the 1-degree (3 sigma) solution accuracy goal problematic. To improve this situation, an intermediate reference frame is introduced, and the angular velocity divided into two parts. The nonspinning part is that which would be observed if there were no rotation about the X-axis. The spinning part is simply the X-axis component of the angular velocity. The two are propagated independently and combined whenever the complete attitude is needed. This approach is better than the usual one-step method because each of the two angular velocities look nearly constant in their respective reference frames. Since the angular velocities are almost constant, the approximations made in discrete time propagation are more nearly true. To demonstrate the advantages of this nonspinning method, attitude is propagated as outlined above and is then compared with the results of the one-step method. Over the 100-minute COBE orbit, the one-step error grows to several degrees while the nonspinning error remains negligible
Dynamic stability and parametric resonance in cylindrical propellant tanks Final report
Dynamic stability and parametric resonance of longitudinally excited liquid propellant tank mode
COBE experience with filter QUEST
A gyro based filter variation on the standard QUEST attitude determination algorithm is applied to the Cosmic Background Explorer (COBE). Filter QUEST is found to be three times as fast as the batch estimator and slightly more accurate than regular QUEST. Perhaps more important than its speed or accuracy is the fact that Filter QUEST can provide real time attitude solutions when regular QUEST cannot, due to lack of observability. Filter QUEST is also easy to use and adjust for the proper memory length. Suitable applications for Filter QUEST include coarse and real time attitude determination
Probing dipole-forbidden autoionizing states by isolated attosecond pulses
We propose a general technique to retrieve the information of
dipole-forbidden resonances in the autoionizing region. In the simulation, a
helium atom is pumped by an isolated attosecond pulse in the extreme
ultraviolet (EUV) combined with a few-femtosecond laser pulse. The excited wave
packet consists of the , , and states, including the background
continua, near the doubly excited state. The resultant electron
spectra with various laser intensities and time delays between the EUV and
laser pulses are obtained by a multilevel model and an ab initio time-dependent
Schr\"odinger equation calculation. By taking the ab initio calculation as a
"virtual measurement", the dipole-forbidden resonances are characterized by the
multilevel model. We found that in contrast to the common assumption, the
nonresonant coupling between the continua plays a significant role in the
time-delayed electron spectra, which shows the correlation effect between
photoelectrons before they leave the core. This technique takes the advantages
of ultrashort pulses uniquely and would be a timely test for the current
attosecond technology.Comment: 10 pages, 6 figure
The accuracy of dynamic attitude propagation
Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes
COBE attitude as seen from the FDF
The goal of the Flight Dynamics Facility (FDF) attitude support is twofold: to determine spacecraft attitude and to explain deviations from nominal attitude behavior. Attitude determination often requires resolving contradictions in the sensor observations. This may be accomplished by applying calibration corrections or by revising the observation models. After accounting for all known sources of error, solution accuracy should be limited only by observation and propagation noise. The second half of the goal is to explain why the attitude may not be as originally intended. Reasons for such deviations include sensor or actuator misalignments and control system performance. In these cases, the ability to explain the behavior should, in principle, be limited only by knowledge of the sensor and actuator data and external torques. Documented here are some results obtained to date in support of the Cosmic Background Explorer (COBE). Advantages and shortcomings of the integrated attitude determination/sensor calibration software are discussed. Some preliminary attitude solutions using data from the Diffuse Infrared Background Experiment (DIRBE) instrument are presented and compared to solutions using Sun and Earth sensors. A dynamical model is constructed to illustrate the relative importance of the various sensor imprefections. This model also shows the connection between the high- and low-frequency attitude oscillations
Media awareness in the age of new media: a case study of Primary 4 students in Hong Kong
This study examined media use and media awareness for Primary 4 students from four schools in Hong Kong (equivalent to Grade 4 in America) and how well their teachers understood their habits of and preferences for media use. The media awareness and media use patterns of students with regard to newspapers, television programmes, radio channels and the Internet were investigated. Results showed that, these students, despite being the new generation of the new media still believed that the news from television, radio and newspapers are more reliable. In addition, they were found to be more proactive media users than their teachers thought. They were more content-oriented in choosing a particular newspaper or TV channel instead of being influenced by their teachers and parents. The teachers were also not able to make very accurate predictions of their students' skills in media evaluation. The findings suggested that more contextual and in-depth approaches are needed to assess the students' media use patterns, from which relevant media education models can be derived.postprin
- …
