129 research outputs found

    The effect of different metallic counterface materials and different surface treatments on the wear and friction of polyamide 66 and its composite in rolling-sliding contact

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/science/journal/00431648 Copyright Elsevier B. V. DOI: 10.1016/S0043-1648(03)00054-1The effect of different metallic counterface materials and different surface treatments on the tribological behaviour of polymer and polymer composite under unlubricated, non-conformal and rolling-sliding contact has been investigated. The most widely used polymer materials - unreinforced polyamide 66 and its composite (RFL4036) – were tested. The metallic materials include aluminium, brass and steel and the surface treatments include Tufftride** treated (known as nitrocarbonising) and magnesium phosphate treated, etc. Tests were conducted over a range of slip ratios at a fixed load of 300 N, 1000 rpm rotational speed using a twin-disc test rig. The experimental results showed that the polyamide composite exhibited less friction and wear than the unreinforced polyamide 66 when running against steel and aluminium counterfaces. However, when tested against brass, polyamide 66 exhibited lower wear than the composite. The surface treatment of steel has a significant effect on the coefficient of friction and the wear rate, as well as on the tribological mechanism, of polyamide 66 composites. It has been observed that a thin film on the contact surface plays a dominant role in reducing the wear and friction of the composite and in suppressing the transverse cracks. This study clearly indicates that both the characteristics of the different counterface metallic materials and the surface treatment greatly control the wear behaviour of polyamide 66 and its composite.Peer reviewe

    Correlation of dent depth to maximum contact force and damage of composite laminates

    Get PDF
    This document is the Accepted Manuscript version of the following article: Z. Shen, Y. G. Xu, and Andreas Chrysanthou, 'Correlation of Dent Depth to Maximum Contact Force and Damage of Composite Laminates', Key Engineering Materials, Vol. 627, pp. 353-356, 2014. The Version of Record is available online at doi: 10.408/www.scientific.net/KEM.627.353. © 2015 Trans Tec Publications, SwitzerlandA major concern affecting the efficient use of carbon fibre reinforced composite laminates in the aerospace industry is the low velocity impact damage which may be introduced accidentally during manufacture, operation or maintenance of the composite structures. It is widely reported that the contact behavior of composite laminates under low-velocity impact can be obtained under quasi-static loading conditions. This paper focuses on the study of the correlation of the dent depth to the maximum contact force and damage of composite laminates under quasi-static loading. Analytical and finite element simulation approaches were employed to investigate relations between the contact force and the dent depth. Experimental investigations on the correlation between dent depth, maximum contact force and damage include quasi-static indentation testing, optical and scanning electron microscopic examination of the damage under different loading levels. The effect of damage initiation and growth on the contact behaviour has been discussed. Results show that consistent correlations between the dent depth, maximum contact force and damage exist and can be predicted with the analytical and numerical approaches. Dent depth can be used as an engineering parameter in assessing the severity of damage for composite structures that are subjected to low-velocity impact. This may lead to the development of a cost-effective technique for the inspection and maintenance of composite structures in aerospace applications.Peer reviewe

    Arginine/Nanocellulose membranes for carbon capture applications

    Get PDF
    The present study investigates the influence of the addition of L-arginine to a matrix of carboxymethylated nanofibrillated cellulose (CMC-NFC), with the aim of fabricating a mobile carrier facilitated transport membrane for the separation of CO2. Self-standing films were prepared by casting an aqueous suspension containing different amounts of amino acid (15\u201330\u201345 wt.%) and CMC-NFC. The permeation properties were assessed in humid conditions (70\u201398% relative humidity (RH)) at 35 \ub0C for CO2 and N2 separately and compared with that of the non-loaded nanocellulose films. Both permeability and ideal selectivity appeared to be improved by the addition of L-arginine, especially when high amino-acid loadings were considered. A seven-fold increment in carbon dioxide permeability was observed between pure CMC-NFC and the 45 wt.% blend (from 29 to 220 Barrer at 94% RH), also paired to a significant increase of ideal selectivity (from 56 to 185). Interestingly, while improving the separation performance, water sorption was not substantially affected by the addition of amino acid, thus confirming that the increased permeability was not related simply to membrane swelling. Overall, the addition of aminated mobile carriers appeared to provide enhanced performances, advancing the state of the art for nanocellulose-based gas separation membranes

    Chord line force versus displacement for thin shallow arc pre-curved bimetallic strip

    Get PDF
    This is the accepted version of the following article: G D Angel, G Haritos, A Chrysanthou & V Voloshin, “Chord line force versus displacement for thin shallow arc pre-curved bimetallic strip”, Journal of Mechanical Engineering Science, Vol. 229(1): 116-124, first published online April 29, 2014, published by SAGE Publishing. All rights reserved. The version of record is available online at doi: http://dx.doi.org/10.1177/0954406214530873A pre-curved bimetallic strip that is applied with a force in an axial orientation, i.e. along its chord line, exhibits nonlinear force-displacement characteristics. For thin bimetallic strips, whereby the radius of curvature is large compared to the thickness of the strip, the non-linearity tends to be tangent related. The new theoretical formula introduced here was correlated to the results of a set of force-displacement tests, and a good overall fit of the theory to the test data was achieved. The formula put forward in this work enables the evaluation of large chord line displacements but is limited to the permissible stress limits of the material. This work can also be directly applied to thin shallow arc beams of a single material. The application of this work is in the field of bimetallic force-displacement actuators.Peer reviewe

    Effect of electropulsing on the fatigue resistance of aluminium alloy 2014-T6

    Get PDF
    The effects of electropulsing on the fatigue resistance of aluminium alloy 2014-T6 were studied in relation to electric current amplitude, pulse duration, and number of repetitions. Utilising the Taguchi method, the present study identified the current amplitude and the duration of the electropulsing as the two critical treatment parameters for improved fatigue resistance. A 97% fatigue life improvement was achieved under the electropulsing conditions that were applied. An increase in microhardness and a decrease in electrical conductivity due to electropulsing were correlated with enhanced fatigue resistance in the alloy. Mechanisms related to the effects of the electropulsing treatment were elucidated based on observations from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as well as numerical simulation results. The mechanisms identified by observation included dislocation movement and the secondary precipitation of GP-zones. Further explication of these mechanisms was provided by the application of a “magnetic field’’ model

    Effect of Alternating Magnetic Field on the Fatigue Behaviour of EN8 Steel and 2014-T6 Aluminium Alloy

    Get PDF
    The application of an alternating magnetic field (0.54 T) was observed to lead to an improvement in the fatigue endurance and an increase in Vickers microhardness and tensile strength of both EN8 steel and AA2014-T6 alloy. Fractography using scanning electron microscopy showed evidence of more ductile fracture features after treatment in contrast to untreated samples. The results of X-ray diffraction indicated formation of more compressive residual stresses following treatment; while examination by transmission electron microscopy showed evidence of fewer dislocations. In the case of the AA2014-T6 alloy; GP zones were also generated by the alternating magnetic field. However; the temperature increase during the treatment was too low to explain these observations. The results were attributed to the non-thermal effect of the alternating magnetic field treatment that led to depinning and movement of dislocations and secondary precipitation of copper

    Attribution of the Hemispheric Asymmetries in Trends of Stratospheric Trace Gases Inferred From Microwave Limb Sounder (MLS) Measurements

    Get PDF
    Using Microwave Limb Sounder (MLS) satellite observations, ERA‐Interim reanalysis data, and a chemistry transport model simulation, we analyze and investigate the causes of the asymmetric hemispheric trends of N2O, CH4, and HCl in the stratosphere during the period 2004–2012. We find significant hemispheric asymmetries in the trends of these trace gases in the midlatitude middle and lower stratosphere. With regard to N2O and CH4, the enhanced downwelling branch of the residual circulation in the Northern Hemisphere (NH) middle and upper stratosphere transports more N2O/CH4‐poor air from the upper stratosphere to the lower stratosphere. The enhanced poleward meridional branch of the residual circulation in the Southern Hemisphere (SH) stratosphere brings more N2O/CH4‐rich air from lower to middle latitudes. These processes therefore contribute to the negative trends of N2O and CH4 in the NH lower stratosphere and the positive trends in the SH middle stratosphere. A corresponding positive trend is found for HCl in the NH, where the deep branch of the residual circulation located in the middle and upper stratosphere strengthens, bringing more HCl‐rich air downward to the lower stratosphere, while the shallow branch of the residual circulation in the lower stratosphere weakens and leads to enhanced conversion of chlorine‐containing source gases of different lifetimes to HCl. A reversed picture emerges in the SH, where the deep branch of the residual circulation in the middle and upper stratosphere weakens, while the shallow branch in the lower stratosphere strengthens, resulting in less HCl there. In addition, the southward shift of the upwelling branch of the residual circulation in recent decades can partly explain trace gas trends above 20 hPa, while the eddy mixing has a small effect on the trends. Understanding these contributions from different processes to the hemispheric asymmetries in trends of these trace gases can help us to evaluate more accurately future changes in stratospheric composition

    Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling

    Get PDF
    Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected Arabidopsis with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic Arabidopsis line. A deletion in the minimum transactivator domain was defective in virus replication but retained the capacity to suppress RNA silencing locally. Symptom expression in CaMV-infected plants is apparently linked to the ability to suppress RNA silencing. When transiently co-expressed with tomato bushy stunt virus P19, an elicitor of programmed cell death in Nicotiana tabacum, WT P6 suppressed the hypersensitive response, but three mutants, two with deletions within the distal end of domain D-I and one involving the N-terminal nuclear export signal (NES), were unable to do so. Deleting the N-terminal 20 aa also abolished the suppression of pathogen-associated molecular pattern-dependent PR1a expression following agroinfiltration. However, the two other deletions in domain D-I retained this activity, evidence that the mechanisms underlying these functions are not identical. The D-I domain of P6 when expressed alone failed to suppress either cell death or PR1a expression and is therefore necessary but not sufficient for all three defence suppression activities. Consequently, concerns about the biosafety of genetically modified crops carrying truncated ORFVI sequences appear unfounded

    The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models

    Get PDF
    We perform the first multi-model intercomparison of the impact of nudged meteorology on the stratospheric residual circulation using hindcast simulations from the Chemistry–Climate Model Initiative (CCMI). We examine simulations over the period 1980–2009 from seven models in which the meteorological fields are nudged towards a reanalysis dataset and compare these with their equivalent free-running simulations and the reanalyses themselves. We show that for the current implementations, nudging meteorology does not constrain the mean strength of the stratospheric residual circulation and that the inter-model spread is similar, or even larger, than in the free-running simulations. The nudged models generally show slightly stronger upwelling in the tropical lower stratosphere compared to the free-running versions and exhibit marked differences compared to the directly estimated residual circulation from the reanalysis dataset they are nudged towards. Downward control calculations applied to the nudged simulations reveal substantial differences between the climatological lower-stratospheric tropical upward mass flux (TUMF) computed from the modelled wave forcing and that calculated directly from the residual circulation. This explicitly shows that nudging decouples the wave forcing and the residual circulation so that the divergence of the angular momentum flux due to the mean motion is not balanced by eddy motions, as would typically be expected in the time mean. Overall, nudging meteorological fields leads to increased inter-model spread for most of the measures of the mean climatological stratospheric residual circulation assessed in this study. In contrast, the nudged simulations show a high degree of consistency in the inter-annual variability in the TUMF in the lower stratosphere, which is primarily related to the contribution to variability from the resolved wave forcing. The more consistent inter-annual variability in TUMF in the nudged models also compares more closely with the variability found in the reanalyses, particularly in boreal winter. We apply a multiple linear regression (MLR) model to separate the drivers of inter-annual and long-term variations in the simulated TUMF; this explains up to ∼75 % of the variance in TUMF in the nudged simulations. The MLR model reveals a statistically significant positive trend in TUMF for most models over the period 1980–2009. The TUMF trend magnitude is generally larger in the nudged models compared to their free-running counterparts, but the intermodel range of trends doubles from around a factor of 2 to a factor of 4 due to nudging. Furthermore, the nudged models generally do not match the TUMF trends in the reanalysis they are nudged towards for trends over different periods in the interval 1980–2009. Hence, we conclude that nudging does not strongly constrain long-term trends simulated by the chemistry–climate model (CCM) in the residual circulation. Our findings show that while nudged simulations may, by construction, produce accurate temperatures and realistic representations of fast horizontal transport, this is not typically the case for the slower zonal mean vertical transport in the stratosphere. Consequently, caution is required when using nudged simulations to interpret the behaviour of stratospheric tracers that are affected by the residual circulation
    corecore