35 research outputs found

    Evaluation of the CO2 Storage Capacity in Sandstone Formations from the Southeast Mesohellenic trough (Greece)

    Get PDF
    This study investigates the capability of the Southeast Mesohellenic Trough (SE MHT) sandstone formations to serve as a potential reservoir for CO2 storage in response to the emerging climate change issues by promoting environmentally friendly mineral sequestration applications. Sandstone samples, for the first time, were evaluated for their petrographic characteristics, mineral chemistry, geochemical properties, as well as their petrophysical and gas adsorption properties through tests. The sandstones were tested and classified into distinct groups. The most promising site to be considered for pilot CO2 storage testing is the Pentalofos Formation locality since its sandstones display specific mineral phases with the proper modal composition to conceivably react with injected CO2, leading to the development of newly formed and stable secondary mineral phases. The gas adsorption results are also more encouraging for sandstones from this sedimentary formation. All the measured UCS (uniaxial compressive strength), Ei (bending stiffness), and ν (Poisson’s ratio) results are above those dictated by international standards to perform CO2 storage practices safely. Furthermore, the specified targeted locality from the Pentalofos Formation holds the geological advantage of being overlaid by an impermeable cap-rock formation, making it suitable for deploying CO2 mineralization practices. The demarcated area could permanently store a calculated amount of ~50 × 105 tons of CO2 within the geological reservoir by reacting with the specified mineral phases, as specified through the proposed petrographic PrP index (potential reactive phases)

    A randomized, phase III trial to evaluate rucaparib monotherapy as maintenance treatment in patients with newly diagnosed ovarian cancer (ATHENA–MONO/GOG-3020/ENGOT-ov45)

    Get PDF
    PURPOSE: ATHENA (ClinicalTrials.gov identifier: NCT03522246) was designed to evaluate rucaparib first-line maintenance treatment in a broad patient population, including those without BRCA1 or BRCA2 (BRCA) mutations or other evidence of homologous recombination deficiency (HRD), or high-risk clinical characteristics such as residual disease. We report the results from the ATHENA–MONO comparison of rucaparib versus placebo. METHODS: Patients with stage III-IV high-grade ovarian cancer undergoing surgical cytoreduction (R0/complete resection permitted) and responding to first-line platinum-doublet chemotherapy were randomly assigned 4:1 to oral rucaparib 600 mg twice a day or placebo. Stratification factors were HRD test status, residual disease after chemotherapy, and timing of surgery. The primary end point of investigator-assessed progression-free survival was assessed in a step-down procedure, first in the HRD population (BRCA-mutant or BRCA wild-type/loss of heterozygosity high tumor), and then in the intent-to-treat population. RESULTS: As of March 23, 2022 (data cutoff), 427 and 111 patients were randomly assigned to rucaparib or placebo, respectively (HRD population: 185 v 49). Median progression-free survival (95% CI) was 28.7 months (23.0 to not reached) with rucaparib versus 11.3 months (9.1 to 22.1) with placebo in the HRD population (log-rank P = .0004; hazard ratio [HR], 0.47; 95% CI, 0.31 to 0.72); 20.2 months (15.2 to 24.7) versus 9.2 months (8.3 to 12.2) in the intent-to-treat population (log-rank P < .0001; HR, 0.52; 95% CI, 0.40 to 0.68); and 12.1 months (11.1 to 17.7) versus 9.1 months (4.0 to 12.2) in the HRD-negative population (HR, 0.65; 95% CI, 0.45 to 0.95). The most common grade ≥ 3 treatment-emergent adverse events were anemia (rucaparib, 28.7% v placebo, 0%) and neutropenia (14.6% v 0.9%). CONCLUSION: Rucaparib monotherapy is effective as first-line maintenance, conferring significant benefit versus placebo in patients with advanced ovarian cancer with and without HRD

    A Mechatronic System for Quantitative Application and Assessment of Massage-Like Actions in Small Animals

    No full text
    Massage therapy has a long history and has been widely believed effective in restoring tissue function, relieving pain and stress, and promoting overall well-being. However, the application of massage-like actions and the efficacy of massage are largely based on anecdotal experiences that are difficult to define and measure. This leads to a somewhat limited evidence-based interface of massage therapy with modern medicine. In this study, we introduce a mechatronic device that delivers highly reproducible massage-like mechanical loads to the hind limbs of small animals (rats and rabbits), where various massage-like actions are quantified by the loading parameters (magnitude, frequency and duration) of the compressive and transverse forces on the subject tissues. The effect of massage is measured by the difference in passive viscoelastic properties of the subject tissues before and after mechanical loading, both obtained by the same device. Results show that this device is useful in identifying the loading parameters that are most conducive to a change in tissue mechanical properties, and can determine the range of loading parameters that result in sustained changes in tissue mechanical properties and function. This device presents the first step in our effort for quantifying the application of massage-like actions used clinically and measurement of their efficacy that can readily be combined with various quantitative measures (e.g., active mechanical properties and physiological assays) for determining the therapeutic and mechanistic effects of massage therapies
    corecore