49 research outputs found

    Long‐term shifts in the seasonal abundance of adult Culicoides biting midges and their impact on potential arbovirus outbreaks

    Get PDF
    1. Surveillance of adult Culicoides biting midge flight activity is used as an applied ecological method to guide the management of arbovirus incursions on livestock production in Europe and Australia. 2. To date the impact of changes in the phenology of adult vector activity on arbovirus transmission has not been defined. We investigated this at two sites in the UK, identifying 150,000 Culicoides biting midges taken from 2867 collections over a nearly 40 year timescale. 3. Whilst we recorded no change in seasonal activity at one site, shifts in first adult appearance and last adult appearance increased the seasonal activity period of Culicoides species at the other site by 40 days over the time period. 4. Lengthening of the adult activity season was driven by an increase in abundance of Culicoides and correlated with local increases in temperature and precipitation. This diversity in responses poses significant challenges for predicting future transmission and overwintering risk. 5. Policy implications. Our analysis not only shows a dramatic and consistent increase in the adult active period of Culicoides biting midges, but also that this varies significantly between sites. This suggests broad‐scale analyses alone are insufficient to understand the potential impacts of changes in climate on arbovirus vector populations. Understanding the impact of climate change on adult Culicoides seasonality and transmission of arboviruses requires the context of changes in a range of other local ecological drivers

    Grand challenges in entomology: Priorities for action in the coming decades

    Get PDF
    Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change

    Grand challenges in entomology: priorities for action in the coming decades

    Get PDF
    1. Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. 2. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). 3. A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. 4. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). 5. Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. 6. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change

    Ecological correlates of local extinction and colonisation in the British ladybird beetles (Coleoptera: Coccinellidae)

    No full text
    Five main drivers of population declines have been identified: climate change, habitat degradation, invasive alien species (IAS), overexploitation and pollution. Each of these drivers interacts with the others, and also with the intrinsic traits of individual species, to determine species’ distribution and range dynamics. We explored the relative importance of life-history and resource-use traits, climate, habitat, and the IAS Harmonia axyridis in driving local extinction and colonisation dynamics across 25 ladybird species (Coleoptera: Coccinellidae).Species were classified as continually present, continually absent, extinct, or colonising in each of 4,642 1-km2 grid squares. The spatial distribution of local extinction and colonisation events (in the grid squares) across all species’ ranges were related to ecological traits, overlap with H. axyridis, climate, and habitat factors within generalised linear models (GLMs). GLMs were also used to relate species’ traits, range characteristics, and niche overlap with H. axyridis to extinction and colonisation rates summarised at the species level. Bayesian model averaging was used to account for model uncertainty, and produce reduced sets of models which were well-supported by data. Species with a high degree of niche overlap with H. axyridis suffered higher extinction rates in both analyses, while at the spatial scale extinctions were more likely and colonisations less likely in areas with a high proportion of urban land cover. In the spatial analysis, polymorphic species with large range sizes were more likely to colonise and less likely to go extinct, and sunny grid squares were more likely to be colonised. Large, multivoltine species and rainy grid squares were less likely to colonise or be colonised. In conclusion for ladybirds, extinction and colonisation dynamics are influenced by several factors. The only factor that both increased the local extinction likelihood and reduced colonisation likelihood was urban land cover, while ecological overlap with H. axyridis greatly increased extinction rates. Continued spread of H. axyridis is likely to adversely affect native species and urban areas may be particularly vulnerable

    Data from: Long-term shifts in the seasonal abundance of adult Culicoides biting midges and their impact on the potential for arbovirus outbreaks

    No full text
    1. Surveillance of adult Culicoides biting midge flight activity is used as an applied ecological method to guide the management of arbovirus incursions on livestock production in Europe and Australia. 2. To date the impact of changes in the phenology of adult vector activity on arbovirus transmission has not been defined. We investigated this at two sites in the UK, identifying 150,000 Culicoides biting midges taken from 2867 collections over a nearly 40 year timescale. 3. Whilst no change in seasonal activity was recorded at one site, shifts in first adult appearance and last adult appearance increased the seasonal activity period of Culicoides species at the other site by 40 days over the time period. 4. Lengthening of the adult activity season was driven by an increase in abundance of Culicoides and correlated with local increases in temperature and precipitation. This diversity in response poses significant challenges for predicting future transmission and overwintering risk. 5. Policy implications: Our analysis shows a dramatic and consistent increase of the adult active period of Culicoides, but also that this varies significantly from site to site, suggesting broad-scale analyses alone are insufficient to understand the potential impacts of changes in climate on arbovirus vector populations

    Influence of season and meteorological parameters on flight activity of Culicoides biting midges

    Get PDF
    Culicoides biting midges are vectors of internationally important arboviruses including bluetongue virus (BTV). The ecological constraints imposed by the small body size of these insects strongly influence the epidemiology of the diseases they can carry. Bluetongue virus recently emerged in northern Europe, and atmospheric dispersion models have subsequently been employed to simulate vector movement (and hence likely spread of BTV). The data underlying such models, however, have hitherto either been obtained from small-scale studies or from outside the north-western Palaearctic. The effects of seasonality and local meteorological conditions upon the daily presence and abundance of Culicoides vectors were examined using 2760 samples collected across a network of 12 different habitat types in England during 2008. Over 50 000 individuals were estimated to be in the samples with males constituting 62% of the total collection, allowing straightforward comparison between potential vector species in terms of their activity rates and seasonality. Culicoides abundance was linked to livestock density and land use. Farm-associated Culicoides species were recorded at all sites including species thought to be restricted to this ecosystem by larval habitat, suggesting a greater potential for dispersal over land than previously thought. Synthesis and applications. The model developed has already been applied in a functional dispersion model to predict disease risk from wind-borne infected Culicoides incursion into the UK and elsewhere. The study has expounded the long-distance dispersal potential of Culicoides, essential for future prediction of the incursion and spread of Culicoides-borne pathogens. It has additionally contributed to the understanding of the ecology of highly dispersive insect vectors

    Data from: Long-term shifts in the seasonal abundance of adult Culicoides biting midges and their impact on the potential for arbovirus outbreaks

    No full text
    1. Surveillance of adult Culicoides biting midge flight activity is used as an applied ecological method to guide the management of arbovirus incursions on livestock production in Europe and Australia. 2. To date the impact of changes in the phenology of adult vector activity on arbovirus transmission has not been defined. We investigated this at two sites in the UK, identifying 150,000 Culicoides biting midges taken from 2867 collections over a nearly 40 year timescale. 3. Whilst no change in seasonal activity was recorded at one site, shifts in first adult appearance and last adult appearance increased the seasonal activity period of Culicoides species at the other site by 40 days over the time period. 4. Lengthening of the adult activity season was driven by an increase in abundance of Culicoides and correlated with local increases in temperature and precipitation. This diversity in response poses significant challenges for predicting future transmission and overwintering risk. 5. Policy implications: Our analysis shows a dramatic and consistent increase of the adult active period of Culicoides, but also that this varies significantly from site to site, suggesting broad-scale analyses alone are insufficient to understand the potential impacts of changes in climate on arbovirus vector populations

    Using biological traits to explain ladybird distribution patterns

    Get PDF
    Aim: Determining to what extent differing distribution patterns are governed by species’ life-history and resource-use traits may lead to an improved understanding of the impacts of environmental change on biodiversity. We investigated the extent to which traits can explain distribution patterns in the ladybird fauna (Coleoptera: Coccinellidae) of Great Britain. Location: The British mainland and inshore islands (Anglesey, the Isle of Wight and the Inner Hebrides). Methods: The distributions of 26 ladybird species resident in Britain were characterized in terms of their range size (from 2661 10-km grid squares across Britain) and proportional range fill (at 10- and 50-km scales). These were assessed relative to five traits (body length, elytral colour pattern polymorphism, voltinism, habitat specificity and diet breadth). The role of phylogenetic autocorrelation was examined by comparing the results of phylogenetic and generalized least-squares regressions. Results: Diet breadth was the only trait correlated with range size: species with broad diets had larger range sizes than dietary specialists. Range fill was sensitive to recording intensity (a per-species measure of the mean number of records across occupied squares); models including both recording intensity and range size provided more explanatory power than models incorporating ecological traits alone. Main conclusions: Habitat specificity is often invoked to explain the distribution patterns of species, but here we found diet breadth to be the only ecological correlate of both range fill and range size. This highlights the importance of understanding predator–prey interactions when attempting to explain the distribution patterns of predatory species. Our results suggest that the diet breadth of predatory species is a better correlate of range size and fill than other measures, such as habitat specificity
    corecore