4,923 research outputs found

    Exact Equivalence of the D=4 Gauged Wess-Zumino-Witten Term and the D=5 Yang-Mills Chern-Simons Term

    Full text link
    We derive the full Wess-Zumino-Witten term of a gauged chiral lagrangian in D=4 by starting from a pure Yang-Mills theory of gauged quark flavor in a flat, compactified D=5. The theory is compactified such that there exists a B_5 zero mode, and supplemented with quarks that are ``chirally delocalized'' with q_L (q_R) on the left (right) boundary (brane). The theory then necessarily contains a Chern-Simons term (anomaly flux) to cancel the fermionic anomalies on the boundaries. The constituent quark mass represents chiral symmetry breaking and is a bilocal operator in D=5 of the form: \bar{q}_LWq_R+h.c, where W is the Wilson line spanning the bulk, 0\leq x^5 \leq R and is interpreted as a chiral meson field, W=\exp(2i\tilde{\pi}/f_\pi), where f_\pi \sim 1/R. The quarks are integrated out, yielding a Dirac determinant which takes the form of a ``boundary term'' (anomaly flux return), and is equivalent to Bardeen's counterterm that connects consistent and covariant anomalies. The Wess-Zumino-Witten term then emerges straightforwardly, from the Yang-Mills Chern-Simons term, plus boundary term. The method is systematic and allows generalization of the Wess-Zumino-Witten term to theories of extra dimensions, and to express it in alternative and more compact forms. We give a novel form appropriate to the case of (unintegrated) massless fermions.Comment: 25 pages, 1 figure; minor errors fixe

    Static Analysis of Memory-Accessing Gestures in Java

    Get PDF
    We propose the notion of Java-program gestures that are composed of a series of memory-accessing instructions. By finding patterns in gestures whose execution can be atomic, we can load them in an intelligent memory controller. This process can improve performance of the Java Virtual Machine, decrease code footprint, and reduce power consumption in hardware. In this thesis we formally define a language of gestures and introduce a method of detecting them statically at compile-time. We introduce a simple heuristic for reducing the number of gestures that must be loaded into the memory controller and show that finding the minimum number is NP-Complete. We profile the performance of this algorithm extensively on a set of Java benchmarks

    Insecticide ear tags numerically improve grazing cattle performance

    Get PDF
    Stocker cattle grazing pastures during the summer months face challenges due to horn flies, which can result in reduced weight gains and less efficient use of forages. One strategy for controlling horn flies is insecticide-impregnated ear tags. The use of pesticide ear tags may be an effective management practice to improve overall productivity during a grazing season. The objective of this study was to evaluate the efficacy of insecticide ear tags as a means of improving growth of stocker calves grazing native pastures in the Flint Hills region of Kansas

    The Marlboro Formation in its type area and associated rocks just west of the Bloody Bluff Fault Zone, Marlborough area, Massachusetts

    Get PDF
    Geology of the coastal lowlands, Boston to Kennebunk, Maine: The 76th annual meeting New England Intercollegiate Geological Conference, Danvers, Massachusetts, October 12-14, 1984: Trip C-

    Health Care Reform\u27s Proposed End-of-Life Provisions

    Get PDF
    End-of-life planning promotes patient autonomy by allowing individual patients to inform and direct care givers and healthcare proxies on their desired level of end-of-life care, where the patient prefers to pass away (whether at home or in a hospital setting), and the methods and levels of pain management that the patient deems desirable. Given that, it is counter-intuitive that a significant majority of American\u27s fail to execute, or fail to properly execute, advance directives. Theauthor’seffortsfocusonwhatcanbedonetoimprove,generally,end-of-lifecare. Tothatend,theauthorsconclude that improvements in end-of-life care must be achieved at three levels: the individual level, the healthcare provider level, andatthegovernmentlevel. Ontheindividuallevel,patientsmustassumegreateraccountabilityfortheirownend-of-life care. Thatentailsmakingone\u27swishesforend-of-lifecareknowntofamilymembersandhealthcareproviders. Onthe healthcare provider level, improved patient communication and improved delivery of palliative-oriented care are first order initiatives. Finally, the government can play a significant role in improving end-of-life care by collecting better healthcare utilization and cost data on end-of-life experiences, expanding benefits for palliative care services, and promoting the use of advance directives through legislative efforts that include patient education measures

    M–M Bond-Stretching Energy Landscapes for M_2(dimen)_(4)^(2+) (M = Rh, Ir; dimen = 1,8-Diisocyanomenthane) Complexes

    Get PDF
    Isomers of Ir_2(dimen)_(4)^(2+) (dimen = 1,8-diisocyanomenthane) exhibit different Ir–Ir bond distances in a 2:1 MTHF/EtCN solution (MTHF = 2-methyltetrahydrofuran). Variable-temperature absorption data suggest that the isomer with the shorter Ir–Ir distance is favored at room temperature [K = ~8; ΔH° = −0.8 kcal/mol; ΔS° = 1.44 cal mol^(–1) K^(–1)]. We report calculations that shed light on M_2(dimen)_(4)^(2+) (M = Rh, Ir) structural differences: (1) metal–metal interaction favors short distances; (2) ligand deformational-strain energy favors long distances; (3) out-of-plane (A_(2u)) distortion promotes twisting of the ligand backbone at short metal–metal separations. Calculated potential-energy surfaces reveal a double minimum for Ir_2(dimen)_(4)^(2+) (4.1 Å Ir–Ir with 0° twist angle and ~3.6 Å Ir–Ir with ±12° twist angle) but not for the rhodium analogue (4.5 Å Rh–Rh with no twisting). Because both the ligand strain and A_(2u) distortional energy are virtually identical for the two complexes, the strength of the metal–metal interaction is the determining factor. On the basis of the magnitude of this interaction, we obtain the following results: (1) a single-minimum (along the Ir–Ir coordinate), harmonic potential-energy surface for the triplet electronic excited state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 2.87 Å; F_(Ir–Ir) = 0.99 mdyn Å^(–1)); (2) a single-minimum, anharmonic surface for the ground state of Rh_2(dimen)_(4)^(2+) (R_(e,Rh–Rh) = 3.23 Å; F_(Rh–Rh) = 0.09 mdyn Å^(–1)); (3) a double-minimum (along the Ir–Ir coordinate) surface for the ground state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 3.23 Å; F_(Ir–Ir) = 0.16 mdyn Å^(–1))

    Advantages and limitations to the use of optical measurements to study sediment properties

    Get PDF
    Measurements of optical properties have been used for decades to study particle distributions in the ocean. They are useful for estimating suspended mass concentration as well as particle-related properties such as size, composition, packing (particle porosity or density), and settling velocity. Measurements of optical properties are, however, biased, as certain particles, because of their size, composition, shape, or packing, contribute to a specific property more than others. Here, we study this issue both theoretically and practically, and we examine different optical properties collected simultaneously in a bottom boundary layer to highlight the utility of such measurements. We show that the biases we are likely to encounter using different optical properties can aid our studies of suspended sediment. In particular, we investigate inferences of settling velocity from vertical profiles of optical measurements, finding that the effects of aggregation dynamics can seldom be ignored
    • …
    corecore