View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2004-13

2004-03-29

Static Analysis of Memory-Accessing Gestures in Java

Christopher R. Hill

We propose the notion of Java-program gestures that are composed of a series of memory-
accessing instructions. By finding patterns in gestures whose execution can be atomic, we can
load them in an intelligent memory controller. This process can improve performance of the
Java Virtual Machine, decrease code footprint, and reduce power consumption in hardware. In
this thesis we formally define a language of gestures and introduce a method of detecting them
statically at compile-time. We introduce a simple heuristic for reducing the number of gestures
that must be loaded into the memory controller and show that finding the minimum... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

b‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Hill, Christopher R., "Static Analysis of Memory-Accessing Gestures in Java" Report Number:
WUCSE-2004-13 (2004). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/985

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233234666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/985?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/985

Static Analysis of Memory-Accessing Gestures in Java

Christopher R. Hill

Complete Abstract:

We propose the notion of Java-program gestures that are composed of a series of memory-accessing
instructions. By finding patterns in gestures whose execution can be atomic, we can load them in an
intelligent memory controller. This process can improve performance of the Java Virtual Machine,
decrease code footprint, and reduce power consumption in hardware. In this thesis we formally define a
language of gestures and introduce a method of detecting them statically at compile-time. We introduce a
simple heuristic for reducing the number of gestures that must be loaded into the memory controller and
show that finding the minimum number is NP-Complete. We profile the performance of this algorithm
extensively on a set of Java benchmarks.

https://openscholarship.wustl.edu/cse_research/985?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/985?utm_source=openscholarship.wustl.edu%2Fcse_research%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2004-13

Static Analysis of Memory-Accessing Gestures in Java - Master's Thesis,
May 2004

Authors: Hill, Christopher R.

March 29, 2004

Abstract: We propose the notion of Java-program gestures that are composed of a series of memory-accessing
instructions. By finding patterns in gestures whose execution can be atomic, we can load them in an intelligent
memory controller. This process can improve performance of the Java Virtual Machine, decrease code footprint,
and reduce power consumption in hardware.

In this thesis we formally define a language of gestures and introduce a method of detecting them statically at
compile-time. We introduce a simple heuristic for reducing the number of gestures that must be loaded into the
memory controller and show that finding the minimum number is NP-Complete. We profile the performance of
this algorithm extensively on a set of Java benchmarks.

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Short Title: Static Analysis of Java Gestures Hill, M.Sc. 2004

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

STATIC ANALYSIS OF MEMORY-ACCESSING GESTURES IN JAVA
by
Christopher R. Hill B.S. Applied Science

Prepared under the direction of Dr. Ron K. Cytron

A thesis presented to the Sever Institute of
Washington University in partial fulfillment

of the requirements for the degree of

Master of Science
May, 2004

Saint Louis, Missouri

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

STATIC ANALYSIS OF MEMORY-ACCESSING GESTURES IN JAVA

by Christopher R. Hill

ADVISOR: Dr. Ron K. Cytron

May, 2004

Saint Louis, Missouri

We propose the notion of Java-program gestures that are composed of a series
of memory-accessing instructions. By finding patterns in gestures whose execution
can be atomic, we can load them in an intelligent memory controller. This process
can improve performance of the Java Virtual Machine, decrease code footprint, and
reduce power consumption in hardware.

In this thesis we formally define a language of gestures and introduce a method
of detecting them statically at compile-time. We introduce a simple heuristic for
reducing the number of gestures that must be loaded into the memory controller and
show that finding the minimum number is NP-Complete. We profile the performance

of this algorithm extensively on a set of Java benchmarks.

For My Friends and Family

Contents

List of Figures vi
Acknowledgments Lo viii
1 Introduction. 1
1.1 Whatisa Gesture? 1
1.2 Definition of a Language for Gestures 4
1.3 Current Handling of Gestures 5
1.4 Definition of the Language of Macros 6
1.5 Summary of Results, 8

2 Complexity Analysis of the Optimization Problem 10
2.1 Problem Generalization., 10
2.2 Problem Statements, 12
2.3 The NP-Completeness Proof Model 12
2.4 Theorem 1 Proof, 13
241 Theorem e 13

2.4.2 Verifiabilityo o oo 13

2.4.3 Reduction from Subset-Sum 000000 13

244 Forward Proof 15

2.45 Reverse Proof 17

246 Exampleo Lo 18

2.5 Theorem 2 Proof 19
2.6 Theorem 3 Proof 19
2.7 Theorem 4 Proof, 20
2.8 Additional Conjectures 20

iii

Greedy Heuristic for Field Reordering 22

3.1 Concepts e 22
3.2 The Algorithm L 23
3.3 Counterexampleo 24
Scavenge Design and Implementation 27
4.1 Designo 27

411 PathParsing 27

4.1.2 The Reorder Package 28
4.2 Usage e 30
The Seekr Program 32
5.1 Design Considerations oo 32

5.1.1 Program Motivation 32

5.1.2 Motivation for Using Clazzer 32
5.2 Implementation Considerations 35

5.2.1 Building the Type Table 35

5.2.2 Building the Instruction Table 35

5.2.3 Counting Macros 36

5.2.4 The Strategy Pattern 36

5.2.5 Different Strategies L. 36
0.3 Usage e 37
The MacroSimulator Program 39
6.1 Input: The .sprob and .sinfiles 39
6.2 Using Seekr to Generate Simulator Input 40
6.3 The ScavengeModel Class 41
6.4 The Visualizer L 41
6.5 Usage e 43
Experiments 45
7.1 The Java Benchmarks 0000, 45
7.2 Finding Indirection Chains with Javap 46
7.3 Benchmark Statistics o o 00000 46
7.4 Seekr Timing Analysis 0oL 47
7.5 Indirection Chain Execution Timing. 47

v

7.6 Measuring Idea Feasibility with MacroSimulator 48

7.7 Exhaustive Reordering 0000 48
7.7.1 'The Permute Stage 49

7.7.2 The Combine Stage, 49

7.8 Random Reordering. Lo 20
7.9 Greedy Reordering using Scavenge 20
7.10 Greedy Reordering using Seekr 51
711 Results o o 51
7.11.1 Indirection Chain Count Results 51

7.11.2 Timing Results o000 53

7.11.3 Field Reordering Results 26

7.12 Experimental Conclusions 62

8 Conclusion 63
81 Future Worko 64
8.2 Final Thoughts 0. 64
References 66
Vita e 68

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

5.1

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6

Stack Operation of a Double Indirection 3
FSA that Accepts Our Gesture Language 5
Execution of a Double Indirection 6
Execution of a Triple Indirection Ending in a Putfield Instruction 7
Execution of a Double Indirection witha PIM 8
Execution of a Triple Indirection Ending in a Putfield Instruction with a PIM 9
Pictorial example of NP reduction 18
Example Field Alignmento oo oL 23
Example Instruction List (p, q, r, s, and t are instances of Foo objects) . 23
Example Frequency Chart 24
Example Field Alignment after Algorithm Execution 24
Counterexample Field Alignment oL 25
Counterexample Instruction List 25
Counterexample Frequency Chart 26

Two Getfield Chains: (a) one possible data flow path (b) two possible paths 34

The Simulator Main Screen Lo 41
The Hardware Options Screen 42
The Software Options Screen 43
Gesture Counts using Javap-c. 52
Benchmark Statistics 53
Benchmark Size o4
Seekr Timing Profile o 55
Timing Analysis of Benchmarks 95
Execution Time of an Indirection Chain vs. Chain Length 56

vi

7.7 Indirection Chain Timing With and Without Cache o7

7.8 Time Savings of the Macro Strategy from MacroSimulator 57
7.9 Graph of Simulated Execution Time With and Without Macros 58
7.10 Resulting Bounds from Exhaustive Ordering o8
7.11 Mean and Minimum from 25 Random Trials for Each Benchmark 60
7.12 Performance Benefit of the Greedy Algorithm Using Scavenge (OOB is
Outof Box) e 61
7.13 Algorithm Comparison in Seekr 61
7.14 Graph of Greedy Performance Against Measured Bounds 62

vil

Acknowledgments

Thanks to NSF, whose funding through the I'TR-0081214 grant allowed me to main-
tain my lavish lifestyle of opulence while completing this work.

Special thanks goes out to Dr. Ron Cytron, whose intelligence, pastries, and
hockey playing inspired me to remain in academia for a few more years before bolting
to the land of the new economy, signing bonuses, and stock options. They’ll all be
waiting for me when I'm done, right?

Thanks to Lucas Fox for being the brains - and height - of this operation. He
may have proved that my greedy heuristic was nonoptimal, but he more than made
up for it with his great insights, ability to mathematicize the most abstract of ideas,
and ability to make layups. Because of him, I will always be a “poor man’s Lucas”.

Thanks to all my colleagues in the DOC lab who I was fortunate enough to
work with, the Monday morning basketball folks, and the softball team. All work
and no play would have made me a dull boy.

And most of all, thanks to my parents, who are responsible for the work ethic
and values that have helped me to succeed in everything.

Christopher R. Hill

Washington University in Saint Louis
May, 2004

viii

Chapter 1
Introduction

During the past 7 years, Java has gone from the ”future of the Internet” to an online
afterthought with the introduction of Flash, but the language is making news once
again as a possible language of choice for cell phones and other handheld devices.
Nokia already uses Java, citing the ease in which third-party companies can develop
applications in the language as a motivating factor [13], and as cell phones expand
from voice communication devices to portals for accessing the web and playing games,
Java could move even more into the forefront.

When a heavyweight language like Java is crammed into a sleek package such
as a mobile phone, speed and memory footprint are much more important than when
running Java on a personal computer. As phones get smaller and more complex, more
and more instructions must run efficiently using the available memory.

In this thesis, we introduce one approach that marries software intuition with

hardware efficiency to achieve this goal.

1.1 What is a Gesture?

The Java programming language is structured so as to allow programs written in
one generic syntax to be run on any platform. Source files written by a programmer
are compiled into .class files that are interpreted at runtime by a Java Virtual
Machine (JVM), which is a platform-specific implementation. Therefore, as long as
you have a JVM implementation for your platform, you can run any compiled Java
program in that environment. This functionality has been called “write once, run

anywhere” [1].

2

A programmer using the Java language typically writes . java files (later com-

piled into .class files) called classes that interact with other user-defined classes as

well as pre-built ones in the various Java libraries. Together, these .class files form
a Java program.

A .class file is composed of the following parts:

methods contain the instructions that are compiled into opcodes and executed by
the JVM.

fields are variables that exist in every instance of the class.

One example of an instruction that reads the value of a field from main memory
is the getfield opcode. This opcode takes the top address off the stack and returns
from main memory the contents of a specified field of the object that is referenced by
the address taken from the stack [8].

For example, the following code loads the address of an instantiated Foo object
from register 4 and then calls getfield on constant pool entry #68, which is a field

named a of type Bar:

aload 4
getfield #68 <Field Bar a>

Because fields can themselves contain references to other objects, getfield
opcodes can be executed sequentially to obtain the value from a field in an object
that is referenced from another object. We refer to consecutive getfield instructions
as indirection chains, because when each individual opcode returns its resulting
address to the stack, that address is used as the starting point for the next getfield
opcode. The following example shows an indirection chain of length two, also called

a double indirection:

aload 4
getfield #68 <Field Bar a>
getfield #72 <Field Foo £f>

In this case, £ is a field of type Foo that is found in an instance of a Bar object.
The stack operation during execution of these opcodes is shown in Figure 1.1. The
aload opcode loads the initial Foo object reference onto the stack. The first getfield

pops that reference and pushes the contents of the specified field, which is a reference

obj ect ref. (Foo)

Regi ster 4 contains a
reference to a Foo object

al oad 4 obj ect ref. (Bar)
getfield #68 <Field Bar a>
getfield #72 <Field Foo f>

I nstructions

obj ect ref. (Foo)

Stack snapshot after each instruction

Figure 1.1: Stack Operation of a Double Indirection

to a Bar object. Finally, the second getfield pops this reference and pushes the
contents of the last field specified, which is a reference to another Foo object. This
reference is left on the top of the stack for future instructions to use.

There are other instructions that access memory besides getfield, though,
with the most prevalent being putfield. This opcode assigns the value found on the
top of the operand stack to the field specified by the opcode in the class reference
that is directly below it on the stack. For example, the following code would put the

number 5 into integer field i of a newly-created Foo object:

new #9 <Class Foo>

dup

invokespecial #14 <Method Foo()>
astore_1

aload_1

iconst_5

putfield #18 <Field int i>

The invokespecial opcode calls the constructor of Foo, then the reference to
that class is stored in register 1 and then loaded to the top of the stack. Next the
integer 5 is pushed onto the stack, then the putfield opcode is called on field i.

A putfield can also be a part of an indirection chain, as shown here:

new #9 <Class Foo>

dup

invokespecial #14 <Method Foo()>
astore_1

aload_1

getfield #18 <Field Bar a>
getfield #22 <Field Foo f>
iconst_b

putfield #28 <Field int i>

This machine code is generated from a source file that simply constructs a Foo
object called foo and then does the assignment foo.a.f.i = 5. Here the 3 memory-
accessing opcodes are still part of a chain even though they do not directly follow
each other in the machine code. This is because the result of the first two getfield
operations is not used on its own. It is just an intermediary used by the putfield
operator. Because this chain contains three memory-accessing opcodes, it is classified

as a triple indirection.

1.2 Definition of a Language for Gestures

We define a gesture, similar to a superoperator [12], as a series of logically-
consecutive opcodes. Valid gestures can be defined using a language that includes any
sequence of getfield opcodes that ends with a getfield, putfield, or putstatic
opcode. In addition, the sequence can optionally begin with a getstatic opcode. A
gesture is a subsequence of the instruction set. In other words, these instructions
do not have to follow each other consecutively in the code, but the values returned
by the intermediary memory-accessing opcodes cannot be used anywhere else except
by the next memory-accessing opcode.

The language of consecutive gestures can therefore be defined as:

(getfield | getstatic)(getfield)*(getfield | putfield | putstatic)

Note that once again we only accept chains of length two or greater. Another
definition uses a Finite State Automata (FSA) that accepts only valid gestures as

defined by this language. The FSA is shown in Figure 1.2.

getfield
getfield/
getfield/ putfi el pl/
getstatic putstatic

TN TN

Figure 1.2: FSA that Accepts Our Gesture Language

1.3 Current Handling of Gestures

Although superficially simple, repetitive indirection from memory has some unneces-
sary overhead. When a CPU encounters a getfield opcode, it retrieves the address
from the stack and then sends it over to memory. The memory controller then finds
the target address and sends it back to the CPU. Then CPU executes the next
getfield opcode and sends the address it just got, plus some offset, right back to
memory. This process is repeated until the final getfield opcode. After this instruc-
tion is executed, the desired value is at the top of the stack on the CPU. The block
diagram shown in Figure 1.3 demonstrates this process for the double indirection
example.

However, only the final value is of ultimate interest at the CPU, since the
other values returned from memory are just intermediate addresses in the longer
computation. In the example above, the CPU receives the address of Bar a even
though the goal of that series of instructions is to find the value of Foo f. After
fetching the value of Foo f, the address of Bar a is popped off the stack, so it is
unused by any other instruction.

Figure 1.4 shows an example of the same process for a triple indirection ending
in a putfield. The operation shown is foo.a.f.i = x, where x is some integer (int).
Here the excessive use of the memory bus for values that the CPU does not use can
be clearly seen. The CPU receives the memory addresses of a, f, and i even though

they are not used anywhere else in the program.

Address of a

¥alue in a (reference to Foo T)

CPU MEMORY

¥alue in f

Figure 1.3: Execution of a Double Indirection

If we could somehow keep the intermediate information in an intelligent mem-
ory controller, we could avoid accessing the CPU each time. We call this type of smart
memory chip—which could be implemented using a Field-Programmable Gate Ar-
ray (FPGA)-Intelligent RAM (IRAM) or a Processor in Memory (PIM) [7, 11].

Using a PIM could theoretically benefit running a Java program as follows:

e Fewer Memory Bus Cycles: We would reduce the number of trips back and

forth to main memory; therefore, we correspondingly reduce memory bus usage.

e Less Power Consumption: Because we would not be using the memory bus

as often, we would be charging it less frequently as well.

e Better CPU Throughput: We would also free up CPU cycles on a multi-

threaded system for other processes.

1.4 Definition of the Language of Macros

Gestures could be encapsulated on the PIM as macros, which tell memory to fetch
the contents of a certain address, treat the contents of that address as an address,
fetch the contents of the kth field of the object found at that address, and continue as

Address of a

¥alue in a (reference to Foo T)

CPU MEMORY

¥alue in f (reference to int i)

Address of i

Number to Store in i

Figure 1.4: Execution of a Triple Indirection Ending in a Putfield Instruction

long as is necessary. The macros can then be reduced to a sequence of field numbers,
with the starting address provided by the CPU upon calling the macro. If there
is a macro that can execute each gesture in a program, that program is said to be
covered by the set of macros.

For example, if class Foo has field a as its first field and class Bar has field
f as its second field, the macro that would cover this gesture would be the ordered
tuple <1, 2>. This macro would be stored on the PIM, and whenever the application
encounters this gesture it would send an identifier for the corresponding macro and
the address of the Foo object to the PIM.

In general, a macro can be described using the following regular language:
<{k,}'k>keN

Note that a macro must have at least two indices, since we would not expect
any benefit from finding macros of length one.

There is some overhead in using this process, since the gestures must be located
in the .class files and replaced with new opcodes sometime before runtime and the

macros must be stored on the PIM prior to execution. Therefore, the idea is most

Macro Identifier Address of a

¥Yalue in a

o DHREE
PIM —===*' . STORAGE

¥alue in T

Address of a

CPU

¥alue in f

MEMORY

Figure 1.5: Execution of a Double Indirection with a PIM

profitable if .class files contain either very long gestures or a large number of small
gestures that are executed frequently by the JVM.

The benefits of such a system are shown in Figure 1.5 using the same double
indirection example as before. Notice that while the PIM is doing the indirections,
the CPU is not utilizing the memory bus and is free to execute other processes.

The back-and-forth motion is still there, but now it is totally encapsulated in
memory. Regardless of the length of a getfield indirection chain, we send two items
to memory and receive one in return. The first item we send is the macro identifier
that tells the PIM which macro to use. The second is the address of the initial object
as a starting point for the macro. Once the PIM finishes executing the macro, it
returns the desired value.

For chains that end in a putfield, we send three values and receive none in
return. As before, we send the macro identifier and the starting address, but here we
also send over the value to store in the target field. Figure 1.6 shows this process in

detail for a triple indirection that stores a number into an integer field.

1.5 Summary of Results

This thesis will the summarize the results we got by performing the following steps:

e Determine the extent to which chains of memory-accessing instructions exist in

Java programs.

Macro Identifier Address of a

¥Yalue in a

T T,
PIM —==' . STORAGE
CPU T emos

Address of i

Address of a

Number to Store in i

Number to Store in i

MEMORY

Figure 1.6: Execution of a Triple Indirection Ending in a Putfield Instruction with a PIM

e Model the timing of instruction chains at runtime.

e Develop an effective algorithm for minimizing the number of macros needed to

cover a program.

e Measure the effectiveness of our algorithm and the PIM idea in general in a

simulation of the real world.

In the next two chapters we explore the concept of reordering fields in .class

files in an effort to reduce the number of macros we need to cover a program.

10

Chapter 2

Complexity Analysis of the

Optimization Problem

While simply finding gestures and translating them into macros is an effective way of
reducing source code footprint, it does not necessarily guarantee any overall memory
savings. Macro information must still be stored in main memory, so if we can limit
the number of macros needed to cover all dereferencing instructions in a program,
then we can limit the amount of memory overhead that this system requires.

One effective way to reduce the number of macros while maintaining program
behavior is to permute the order of the fields in each Java .class file. Because macros
are just numbers that represent position of fields in their respective class files, then
if we have the macro <x,y> it would be beneficial for us to put as many fields that
are part of dereferencing instructions as possible in the xth and yth positions of their
class files.

For any program, there is some ideal permutation of fields that will fit all
dereferencing instructions into the smallest possible number of macros, but how hard
is it to find this perfect field alignment? In this chapter we prove that this problem
is NP-complete. We begin with a formal definition of our problem and then present

a series of proofs.

2.1 Problem Generalization

Given:

e A positive integer k£ that is the exact length of all gestures.

11
e A program P = (T, FT,I) where

T is a set of types referenced by the program.

FT is a mapping
FT:(TxN)—>T

For a given type t € T, FT(t,n) is the type of the nth field of ¢ according
to the layout of type T'.

I C{(t,m) | t € T,m € N*} isthe multiset of the program’s instructions. Here,
t is the type of an instruction’s first reference. The vector m provides suc-

cessive offsets used for dereferencing.
e We define a vector of types 7((t,m)) for each instruction g € I as follows:
T = t
T, = FT(Ti,l,mi), 1 S Z S k‘

Thus, 7; is type of the jth indirection for instruction g.

e A permutation p permutes the fields of a type as follows:

p: (T xN) >N

e \((t,m), p) represents the effect of a permutation p on instruction (¢,m) as

follows
A((t,m), p) = (t,m')

where m; = p(7;((t,m)),0 < i < k. The extension of A to a set of instructions

is straightforward.
e M C N* is a set of macros available to the program.
e A positive integer p that bounds the size of M.

e For a subset of instructions S C I and a set of macros M, let C(S, M) be the

set of instructions in S covered by macro set M:

C(S,M)={seS|3t3Im(t,m)=s me M}

12
e A positive integer § that bounds the size of the above set.

2.2 Problem Statements

We next seek to determine the complexity of finding a permutation that results in
the fewest number of macros to cover an instruction multiset. Our approach is to

consider a sequence of simpler decision problems as follows.
DI(P,B) (3SCI) (3 p) ICAS, p), M)| =8, |M| =1
D2(P,B,u) 35 CI) (3p) |CAS, p), M)| =8, IM|=p

D3(P,B,u) (35 CT) (3 p) [CAAS, p), M)[=5, [M] < p

Problem D3(P, 1) determines whether p macros suffice to cover § instructions

in program P. The optimization form of this problem is to find

Opt(P, 8) = min D3(P, §,n)

2.3 The NP-Completeness Proof Model

We will use an NP-Completeness reduction to show that our problem is NP-Hard.
Before presenting proof itself, we will first explain how the NP-Completeness proof
model works.

There are a number of complexity classes for categorizing problems. P rep-
resents the class of problems that can be solved in polynomial time, whereas NP
represents the set of problems that can be solved on a nondeterministic machine in
polynomial time.

To prove that a problem is NP-Complete, that is, that there does not exist
an algorithm that solves the problem in polynomial time unless P = NP, it suffices

to perform the following two steps:

e Show that if we are given a solution and told that it is correct, we can verify

both validity and correctness in polynomial time; that is, the problem is in NP.

e Prove that every other NP-Complete problem can be reduced to our problem

in polynomial time and space, in other words that the problem is NP-Hard.

13

Typically, the second part is accomplished by reducing a known NP-Complete

problem to the new problem in polynomial time and space, since one property of the

set of NP-Complete problems is that they all reduce to each other in polynomial time
and space.

A reduction is shown by constructing a specific instance of our problem from

an arbitrary instance of a known NP-Complete problem and showing that there is

a polynomial-time solution to the NP-Complete problem if and only if there is a

polynomial-time solution to our problem [5].

2.4 Theorem 1 Proof

2.4.1 Theorem

D1(P,B): 3SCI) (3p) |CNS, p), M)| =3, |M|=1is NP-complete when the
number of fields per type is greater than 1 for any type in T.

2.4.2 Verifiability

We can reorder the instruction set I with a given p in polynomial time because for
each instruction we can use p along with the instruction’s ¢ and m to find A(¢, m)
as described above in linear time (©(|I| * k)). We can then count the number of
instructions covered by each macro in M in linear time (O(|I| * x)) and sum up
the total number of instructions covered in linear time (©(|I])). Thus, the total
verification time is ©O(|1|xk+ [I|* pu+|I]) = O(|I|* (k+ p+1)), which is polynomial.

2.4.3 Reduction from Subset-Sum

To prove that the problem is NP-complete, we will show that the Subset Sum problem
reduces to it.

Subset Sum asks whether a finite set of sized elements A contains any subset
of elements A’ whose sizes sum up to a positive integer B. It was shown to be
NP-complete with a transformation from Partition by Karp [6]

First we define an instance of problem 1 in terms of a subset sum problem. In
subset sum we are given a finite set A, a size s(a) € Z* for each a € A, and a positive

integer B.

14

Let’s consider an arbitrary instance of subset sum using the notation above
where we are given our set A and our integer B.

We can construct the following specific instance of our problem using the fol-

lowing constraints:
o Let 5 = B.
e Let the variable n be |A|.
e Let k be log,n.
e Let our program P = (T, FT,I) be defined as:

Assign some arbitrary ordering aq, ao, ..., a, to the elements in A.

Let T be a set of nlog,n unique types, with each type containing exactly two
fields (0 and 1). Let the set be enumerated as follows:

Let F'T be defined as:
tiy x {0,1} =ti;1

It follows from this construction of FT that each unique instruction will
reference a series of types t;1,%;2,%3,... € T such that each type is refer-

enced by by at most one unique instruction.

Define function enc(i) which returns the vector of binary digits that represent

the base 2 numeral for i:
enc: I —{0,1}*

In our problem enc(i) would represent m, the sequence of field numbers
being accessed in each successive indirection step of the gesture. A 0 would
indicate the instruction is referencing the first field in a type and a 1 would

indicate the instruction is referencing the second field in a type.

15
This will allow us to create n unique binary instructions. That is, we ensure
there are enough binary digits to create an instruction that references a

series of unique types and has a unique m, for each starting type (¢,;).

Let I be the multiset of ordered pairs:

n s(a;

)
I = U U {(tio, enc(?))}

i=1 c=1
For each a € A, we create a unique instruction (n total) and then “clone”
each one s(a) times.
From our definition of F'T, it follows that our type vector 7 for any instruction

(ti,la enc(z)) will be [ti,l, ti,?a c. ati,k]

e Let |[M| =1, we want to use only one macro.

2.4.4 Forward Proof

First, we need to show that a solution to the subset sum problem implies a solution
to our problem:

A solution to the subset sum problem exists when
JA" C A where) s(a) =B
ac Al

We then need to show 35 and Jp such that |[C(A(S, p), M)| = and |[M| = 1.
e Choose some subset S C I such that:

s(a)
S = U U{(ta,laenc(a))}

ac€A’ c=1

Note that the size of S is B.

e In order to cover exactly § = B instructions with M we need to create a p that
permutes I in such a way that all the instructions in S are covered by the single
element z in M, and no other instructions in I are covered by z. In other words,

we need:

16

(3z) (V(t,m) € S A((t,m), p) = (£, 2), V(t,m) € I =5 A((t,m), p) # (¢, 2))

Here we will let z be a vector of all 0’s (0%).

Because

N 7)) =0

viel

(that is, the types referenced by each instruction in I are disjoint), we can define

their permutations independently.

We define p as:

I if (tiq,enc(i)) ¢ S
p(tiy x 1) =19 0 if (t;1,enc(i)) € S, | = enc(i);
1 if (¢i1,enc(i)) € S, | # enc(i);

1<i<n1<j<kle{0,1}

where j is the index (left to right) into vector enc(i).

Then
Y(t,m) € S A(t,m),p) = (t,0°)

that is, every element and only those elements in A(S,p) are of the form
(ta1,0%),a € A'. So, by our definition of C:

IC(AS, p), M)|= B = 8

Thus, there exists a S and p as defined above such that |C(A(S, p), M)| =
B, |[M|=1.

17
2.4.5 Reverse Proof

Then, going in the other direction, we need to show that a solution to our problem
implies a solution to the subset sum problem.

We want to show that whenever
IS C I, 3p |C(N(S, p), M)| = B, M| =1
then there exists A, A’, and s(a) such that

A'CA D s(a)=B

ac A’
o Let A={i € N | (t;1,enc(i)) € I}.

o Let the weight of each a € A, s(a), be the number of times (; 1, enc(i)) appears

in multiset I.
o Let A'={i € N | (ti1,enc(i)) € S}.

Note that by this construction, S is equivalent to:

s(a)
U U{(io, enc(i)}

acA’ c=1
The cardinality of this set is 3, and we have defined that B = (3 in our problem
definition. Therefore, we simply need to show that the cardinality of S is equivalent
t0 Y 4ca S(a). We can determine the total number of elements in set S in terms of

A" and s(a) through summation because it is a multiset union. The derivation is as

follows:

B = §
s(a)
= | U Ul enc(i))}|

@
= 3 | U (o enc()}

acA’ c=1

= Y s(0)

ac A’

18

Instance of Subset Sum Problem Specific Instance of our Minimum Macros Problem

Arbitrary ordering of the elements in A: {4,2,7,5}

T= t00) tO1)
t(1,0) t(1,1)
t1(2,0) t2,1)
t(3,0) t(3,1)

$ Unigue Instructions in 1:
(t(0,0), <0,0=) (t(1,0), <0,1>) (t(2,0), <1,0=) (&{3,0), <1,1=)
Type Vector (tau) for each unique instruction in I :
<t(0,0), t{0, 1> <t{1,0), t(1,1)> <t(2,0) t(2,1)> <t(3,0), t(3,1)>
Number of times each occurs in 1:
4 2 7 =]

Given 1 macro, {0,0)

B=6 Our S is then { (t(0,0), <0,0=) , (t(1,0), <0,1) }
A=1{4,275}, |A=4 Define P to flip field numbers of t(1,1), all other field numbers are
A'={24},|4=2 unchanged

Thus, exactly 2 unique instructions and 6 total instructions are
covered by macro (0,0)

Figure 2.1: Pictorial example of NP reduction

Which means a solution to the subset problem exists.

Since we have now proven that a solution to the subset sum problem implies
a solution to our problem and that a solution to our problem implies a solution to
the subset sum problem, we can state that an instance of our problem is equivalent

to subset sum and therefore NP-Complete. m

2.4.6 Example

Because we have a unique set of “cloned” instructions for each type, no two groups of
“cloned” instructions are be covered by the same macro unless we permute the fields
of their referenced types. Because we have restricted S to include instructions that
reference all different types, we can change p with the assurance that it will impact
only one indirection in one instruction (and its clones).

These two properties give us the ability to cover all, some, or none of the
instructions with our one macro. This can be done by simply flipping or not flipping
the order of all types referenced by instructions that we want to be covered so that

they conform to our macro.

19
For example, if the instruction we wanted to cover was “10”, its corresponding
type vector 7 was <foo bar baz>, and our macro was “00”; we would need to flip
the fields in foo but not baz or bar. However, the one restriction we have is that if
we cover one instruction we are also covering all its clones. Because the number of
clones is taken directly from the subset sum problem, we can only cover instructions
in groups equal to s(a) for some a € A. This example is shown in Figure 2.1.
Therefore, by solving our problem we would also be solving the corresponding
subset sum problem. If we can cover 5 instructions keeping in mind the group re-
straints, then we can also find a subset of A that sums up to 5. Likewise if we can
find a subset of A that sums up to 5, that must mean that there are some number of
groups of instructions that consist of 5 total instructions, and because we have the

freedom to cover these groups we have solved our problem.

2.5 Theorem 2 Proof

Theorem: D2(P,5,u) (3 S CI) (3 p) [CAS, p), M)| =5, |[M| = pis NP-
complete.

This problem is simply D1 extended to multiple macros rather than restricting
ourselves to just one. The rules for construction still remain the same, though, and
this problem contains Problem 1 as a specific instance of it. By restriction, our

problem above is also NP-complete when |M| > 1 because it is NP-complete when
IM|=1.m

2.6 Theorem 3 Proof

Theorem: D3(P,B,u) (3 S C 1) (3 p) |CAS, p), M) =8, | M| < pis NP-
complete.

This problem is a more general version of the question in Problem 2, which
contains this problem as a specific instance. Because it is NP-complete to find the
p where [instructions are covered by exactly p macros, it is therefore at least as
complex to find the p where § instructions are covered by p macros or less. By

restriction, this problem is also NP-complete. m

20
2.7 Theorem 4 Proof

Theorem: Finding Opt(P, 3) where Opt(P,) = min,cny D3(P,n) is NP-complete.

Here we are doing the same thing we are doing in problem 3 except we not only
want a p to cover < p macros, but we want that to be the absolute minimum number
of macros that could possibly cover the (instructions. This problem is NP-hard,
because we could only solve this problem if we could solve problem 3, but it is not
NP-complete.

For a problem to be NP-complete, as described in § 2.3, it must not only extend
from an NP-complete problem but also be verifiable in polynomial time. If we are
given a solution to this problem, we can easily check that it is a valid solution in
polynomial time, but there is no known way to determine whether that solution is

the minimum solution without checking all other valid solutions. Therefore problem
4 is NP-hard. m

2.8 Additional Conjectures

We have shown that finding the minimum number of macros needed to cover some
group of a program’s gestures is NP-Hard. We propose the conjecture that finding the
minimum number of macros needed to cover all of a program’s gestures is NP-Hard,
although it has not been proven. Formally, we propose that D4(P, i) is NP-Complete,
where DA4(P, 1) is defined as follows:

DAP,p) 3SCI) (3 p) [CAS, p), M)| = I|, |M] < p
The optimization form of this problem is then to find:
Opt(P) = min D4(P,n)

We ran into trouble when trying to use our reduction from Subset Sum to
prove this conjecture because the Subset Sum problem becomes trivial when we force
it to use the entire provided set of integers. We believe that our problem retains its
hardness if we were include the entire set of instructions.

In order to complete this proof, then, we would have to think about a reduction
from some other NP-complete problem. Rather than starting over from scratch with

the proof, we leave this as future work. For the part of our research that involves

21
finding a good algorithm for field reordering, we operate under the assumption that

this conjecture is true and there is no polynomial optimization algorithm.

22

Chapter 3

Greedy Heuristic for Field

Reordering

Given that the problem of finding an optimal alignment for all of the fields in a
Java program is NP-Complete (see Chapter 2), we next proceed to find an algorithm
that finds a “good” alignment in polynomial time. The result is a greedy heuristic

discussed in this chapter.

3.1 Concepts

In order to come up with an algorithm, we created a number of different simple
programs and looked at their optimal field alignments in an effort to spot any patterns.
The first property that we noticed was that since our goal was to force all fields
that appeared in indirection chains to have the same indices, we could never make
things worse by moving those fields that are not found in gestures to the end of the
field alignment in any arbitrary order. Since our macros would not have to cover
these fields, their indices are irrelevant. In addition, even without doing any sort of
intelligent ordering it makes more sense for all relevant fields to be at the tops of their
respective class alignments, since this increases the likelihood of their having indices

1In common.

23

Class Foo
Foo a
Foo b

int c

double d

Figure 3.1: Example Field Alignment

p.a.c
q.a.d
r.b.a

s.b.d
t.a.a

Figure 3.2: Example Instruction List (p, q, r, s, and t are instances of Foo objects)

3.2 The Algorithm

The algorithm itself is fairly straightforward. Assume we have all the classes used
by a program along with a list of their fields. For example, Figure 3.1 shows the
requested information for a sample class Foo.

Assume we also have a list of the indirection instructions issued by the program.
Figure 3.2 shows a sample instruction list for class Foo as defined in Figure 3.1. In
this example, the variables p, q, r, s, and t are all previously-instantiated instances
of Foo objects.

We next make a chart of all fields in all classes, and for each field sum the
number of times that field appears as the first field in a chain, the second field in a
chain, and so on. For example, Figure 3.3 shows the properly-constructed chart for
Foo defined in Figure 3.1 and the instructions stated in Figure 3.2.

We next use this chart to reorder the fields of each class using the following

rules:

e All fields that are not referenced in any chain go at the end of the class, in any

order.

e Of the fields that are found in a chain, all reference fields (i.e. those that have

a non-primitive type) come before primitive fields.

24

Field | 1st | 2nd
a 3 2
b 2 0
C 0 1
d 0 2

Figure 3.3: Example Frequency Chart

Class Foo
Foo a
Foo b

double d

int c

Figure 3.4: Example Field Alignment after Algorithm Execution

e Reference fields are ordered first based on the first column of the frequency
chart and break ties using the second column. For programs with longer chains,

ties in both columns would be broken using the third column.

e Primitive fields are ordered in the same manner once all reference fields have

been ordered.

So in the previous example, class Foo would have the alignment shown in
Figure 3.4. Notice that because ¢ and d are both primitives and both had a first-
column frequency of zero, the tiebreaker was their frequency as the second field in a
chain.

Once fields are reordered, the class files must be rewritten using the new or-
dering. There are a number of open-source tools available that allow the editing of

Java class files, including Jclasslib [2].

3.3 Counterexample

Ordering fields in this manner gets very close to the optimal alignment for most
programs (as we show in Section greedyseekr), and it does so in a much shorter time
than an exhaustive ordering scheme that checks every possible alignment. It does not,

however, result in an optimal solution. The following example describes a situation

25

Class Foo | Class Baz | Class Top | Class Bot | Class Bar
Top a Bot d int f int k Bot m
Top c Bot e int g int |

Figure 3.5: Counterexample Field Alignment

fool.a.f

foo2.a.g

foo3.c.f

bazl.d.f
baz2.d.k
baz3.e.l
barl.m.k

Figure 3.6: Counterexample Instruction List

where the algorithm’s alignment is very close to—but still greater than—the optimal
solution.

Consider the field alignment shown in Figure 3.5 and the list of instructions
in Figure 3.6, where the variable barl is an instance of a Bar object, bazl through
baz3 are instances of Baz objects, and fool through foo3 are instances of Foo ob-
jects. Without any reordering, the following four macros cover all instructions:
<1,1><1,2><2,1><2,2>.

Using the greedy reordering strategy, we use the instruction list of Figure 3.6 to
build the chart shown in Figure 3.7. If we reorder the fields using this chart, we keep
all class alignments the same, which leaves us with the same four macros. However,
if we switch the positions of k and 1 in class Bot, we need only the following three
macros: <1,1><1,2><2,1>. The greedy algorithm in this case did not arrive at
an optimal solution, since by inspection we found a solution better than the greedy
solution.

In Sections 7.9 and 7.10 we detail experiments that we did on two implementa-
tions of the greedy algorithm to profile its performance. Because there is no efficient
optimal algorithm, as we proved in Chapter 2, we are more concerned with the overall
performance and speed of the greedy algorithm than its ability to find the optimal

solution in every case.

Field | 1st | 2nd

B — =0 -0 o
—_— O O OO NN
S N DNOOOCOo

Figure 3.7: Counterexample Frequency Chart

26

27

Chapter 4

Scavenge Design and

Implementation

To implement any ordering scheme, we must first find all gestures in a Java pro-
gram. The first program that we wrote to find gestures and to test the optimization
algorithm outlined in Chapter 3 was named Scavenge. It was a very simplistic imple-
mentation that only located double indirections containing two consecutive getfield
opcodes. In this chapter we discuss the design methodology and features of this pro-
gram. A more robust version called Seekr that finds all memory-accessing gestures of

any length is discussed in Chapter 5.

4.1 Design

Because we were aiming for only a simple way to test the greedy algorithm and
count macros, we concentrated on making the code easy to understand and making
it work on arbitrary Java programs. To accomplish the former, we commented our
code extensively and used Javadoc to create an Application Programmer Inter-
face (API), which can be found at http://deuce.doc.wustl.edu/doc/RandD/ITR/
Gestures/Documentation/index.html. As for the latter, we had to jump through

a few hoops to handle the intricacies of the user’s possibly-customized environment.

4.1.1 Path Parsing

A major hurdle that we had to cross when considering how to write Scavenge was that

we needed to access files in the Java libraries like java.lang and java.util. These

28
files can be located anywhere on a user’s system as long as the location is disclosed
in the CLASSPATH environment variable, as the Java classloader is instructed to
scan the colon-separated list of paths denoted by the CLASSPATH variable when
searching for .class files to load. An example of a valid CLASSPATH is:

This tells the Classloader to look for .class files first in the current directory,
then the parent directory, and if it does not find the file in either of these places the
specified directory in my user space which contains the java libraries.

The Scavenge executable is a UNIX shell script that first copies the contents
of the CLASSPATH variable into a file and then calls the pathParser perl script.
pathParser parses each colon-separated path into a temporary file called paths that
is deleted when the program exits. Therefore, using the example CLASSPATH above,

the temporary file would appear as follows:

/project/cytron/crh2/jdkl.1.8/build/classes/

Now the information from the CLASSPATH is in an easily-readable format for

the Scavenge program so it can recursively search for .class files.

4.1.2 The Reorder Package

The Reorder package is the foundation of the program. It contains the three necessary

classes for program execution: IndrFindr, Order, and MacroScavenger.

IndrFindr

The Scavenge program creates an IndrFindr object for each .class file instantiated or
accessed by a target program. This object keeps track of any fields in its associated
class that have been referenced. It does this by means of a private vector of TableEntry
objects, one TableEntry for each referenced field.

While searching the target program for referenced fields, IndrFindr recursively
searches each newly discovered Classfile so that all .class files that could be accessed
or created during the execution of the target program will be represented by IndrFindr

objects. The group of objects is encapsulated in a static vector inside IndrFindr.

29

Once the recursion has finished, the vector contains IndrFindr objects for every

class in the target program as well as all libraries that it uses. Each of these objects
also contains statistics (for each of its fields) that are needed for the greedy algorithm,
specifically the number of times each field is accessed first and second in an indirection

chain.

Order

The reorder method in the Order class actually does the grunt work of the algorithm.
It accepts an IndrFindr object and reorders the associated class based on the statistics
provided by the IndrFindr object. The reordering is done using the Jclasslib [2] library,
which provides an API for opening and manipulating .class files. With Jclasslib we
could gain access to a class’s fields as an array of objects, manipulate this array to
order the fields appropriately, and finally rewrite the .class file using the new array.

Scavenge iterates through every IndrFindr object in the static vector and calls
reorder on each one. Upon completion every class and library used by the target
program is reordered based on the statistics accumulated by IndrFindr and the rules

presented by the greedy heuristic.

MacroScavenger

For comparison purposes, the reorder package also contains the MacroScavenger class,
which computes the number of necessary macros given the current field alignment.
When this option is enabled, MacroScavenger runs before any reordering takes place
to find the initial number of macros required. After Scavenge creates the IndrFindrs
and orders the fields appropriately using Order, the MacroScavenger is run again in
order to see how many macros were optimized away.

The structure of this program is very similar to IndrFindr in that it also performs
a recursive-descent search of all .class files referenced by a program. However, instead
of compiling usage stats, MacroScavenger searches for double indirections and then
uses the constant pool to look up the index of each field in the chain. The indexes
are then combined together to form a macro of type <x, y> where x and y are both
integers that correspond to the index of each field. Macros are stored in a static
vector inside MacroScavenger, so if the program encounters a unique macro that has

not already been stored in the vector, it can add the new macro.

30

Upon completion, the static vector contains the set of macros needed to cover

all double indirections in the target program; these can be displayed elegantly using
the displayMacros method.

We use the Scavenge program for a preliminary test of the performance of the

greedy algorithm, and the results of this test are found in Chapter 7.

4.2 Usage

Scavenge is checked into the doc-repository in the Scavenge directory. It has the

following command-line options:

Usage: Scavenge <filename> [-vtime -vstats -vfind -vorder -vtrace

-statsonly -help]

-vtime Display execution time

-vstats Run and display results for MacroScavenger
-vfind Display trace information for IndrFindr
-vorder Display trace information for Order
-vtrace Enable all four previous options

-statsonly Run MacroScavenger only

-help Display usage information

The only required command line option is the name of the .class file that is
the “start” of your program. It is important to run Scavenge on the runnable class
or the program will not accurately find all macros.

When running the program on a benchmark or other program that uses its own
packages, the top-level directory that contains the packages must be in the CLASS-
PATH environment variable or the program will not work. To be safe, it’s a good idea
to put any directory that includes classes you use in your program in the CLASS-
PATH. Make sure that all CLASSPATH entries contain the full directory structure
and not just /directoryName.

For example, to run Scavenge on a program called /project/cytron/crh2/
MyProgram.class that performs the reordering without displaying the number of
macros before and after (as would be done in a real-world situation) while displaying

the execution time, use the following command:

31
Scavenge /project/cytron/crh2/MyProgram -vtime

The target program must be specified before any command-line options or the

program will crash elegantly and display the usage information.

32

Chapter 5

The Seekr Program

5.1 Design Considerations

5.1.1 Program Motivation

The motivation for writing the Seekr program was to encapsulate a Java program into
the format described by our NP-completeness algorithm. Specifically, it generates
the indirection-chain instruction list, the type table, and the current field alignment
table. We then use this encapsulation to count the number and length of indirection

instructions and test the performance of different reordering algorithms.

5.1.2 Motivation for Using Clazzer

In Chapter 4, we discussed the Scavenge program which counts the number of macros
needed by a Java program, reorders fields based on our greedy algorithm, and then
counts the macros again. However, this program finds and counts only double indi-
rections and only those instructions with two consecutive getfields.

Scavenge was built with Jclasslib [2], but by using Clazzer [9] we take advan-
tage of the data flow modelling abilities to find indirection chains that are split by
other bytecode instructions, specifically chains ending with a putfield. For most
compilers, putfield chains are written in the following way: getfield getfield
aload putfield. This is a triple indirection chain, but Scavenge counts only two
Pgetfields as part of a chain. With Clazzer, we can construct an instructionGraph
that shows the “parameters” of each instruction. This way, the above chain becomes
putfield(aload, getfield(getfield)).

33
The data flow method also picks up on multiple indirections that span other
instructions. For instance, the following Java instruction sequence would contain a

double indirection under one of the possible execution paths of the program:

boolean bool = false;
Bar b = new Bar();
Foo f = b.foolInstance;
int result;
if (bool)

result = f.integer;
else

result = 3;

On one of two possible data flow paths, int result is assigned to b.f.integer,
which is a double indirection, while the other path is not a gesture at all. Neither
assignment opcode comes right after the last getfield. To find this type of indirection,
data flow analysis is necessary.

Clazzer gives us the ability to represent a program as a graph whose vertices are
connected based on possible dataflow paths. Depending on what kind of information
we want, these vertices contain different data about the program. In our case, we use
StackMonitorVertices to get information about the instruction stack.

StackMonitorVertices resolve stack operations between getfields and track
what value is being supplied to a getfield rather than just what instruction is before
it in the bytecode. They also display the instruction chains in a Lisp-type format. A
double indirection of b.f. integer is shown as getfield integer (getfield f(new
Bar)). This makes it very easy to parse the nodes recursively to find chain lengths.
Figure 5.1 shows two possible getfield chains, one with just one data flow path and
one with two.

The Seekr program combines this idea with our original MacroScavenger pro-
gram. Seekr keeps the two most recently encountered vertices in local variables and
goes through the StackMonitorVertices until it comes to either a getfield or a
putfield followed by a non-memory-accessing opcode. When it does, it recursively
checks the parameter lists of the getfield or putfield vertex and measures the longest
chain along any path to that vertex. With this strategy, all of the types referenced

by a program will be scanned, and the longest getfield chain will be reported.

34

al oad_0O al oad_0

getfield getfield
int n int n al oad_0O

-

getfield getfield
Bar b Bar b

getfield getfield
Foo f Foo f
(a) (b)

Figure 5.1: Two Getfield Chains: (a) one possible data flow path (b) two possible paths

35
5.2 Implementation Considerations

5.2.1 Building the Type Table

To build the Type Table, we use a recursive-descent approach and Clazzer along with
another utility we wrote called FileFinder. FileFinder uses Java’s exception handling
capability to find class files in the current directory or the user’s CLASSPATH and re-
turns the resulting filename including complete path and extension information. The
TypeTable utility begins with a class file specified by the user, reads in its instruc-
tions using Clazzer, and finds those instructions that either call methods or declare
variables of a different type.

It then recursively finds the class files for these types and repeats the process
until it has visited all types referenced by a program. Each class that is visited
is appended to the end of a data structure that holds all classes. Once TypeTable
is done running, that structure contains the full path location and name of every
class file encountered in the specified program. Dynamically, this same task could be

accomplished using reflection.

5.2.2 Building the Instruction Table

With Clazzer we can look at the instructions of each class in the Type Table as an in-
structionGraph. Because related nodes of an instructionGraph contain a reference to the
nodes that placed values they use on the stack (for example getfield(aload 0)) we
only care about nodes that are the end of a chain. From these we can get all informa-
tion about the rest of the chain just by looking at the interior references. Therefore,
we iterate through the instructionGraph and keep references to both the current and
last vertices that we encounter. When the current vertex is not a Fieldreflnstruction
(a getfield or putfield or a getstatic or putstatic) while the last vertex is one,
then the program has encountered the end of a chain.

The program then recursively traverses the graph to find the length of the
chain and to create a linked list that encapsulates the instruction as a list of type-
name pairs for each field referenced in the chain. Finally it adds this linked list to an
ArrayList that stores all instructions, and when the program runs to completion over

all classes,this ArrayList is the Instruction Table.

36
5.2.3 Counting Macros

Given the Type Table and Instruction Table information, it is easy to count the
number of macros that are required for an alignment of fields for the types. The
countMacro function takes in a HashMap that encapsulates an alignment of fields
for all the classes in a program and counts how many macros are needed to cover
the instructions in the Instruction Table. Because all of the necessary information
is pre-calculated and stored in existing data structures, it can perform this count at
an extremely fast rate. In particular, the instruction table does not change, so when
checking a large number of different field alignments we can do so without creating

any new structures.

5.2.4 The Strategy Pattern

To test the greedy algorithm against other algorithms that reorder fields, we imple-
mented the Strategy pattern [4]. Each algorithm is a class that extends Strategy
and has a reorder method that is called to reorder the fields. It is this easy to run
tests on each algorithm, and a program could dynamically choose which reordering
algorithm to use at runtime. For instance, if the program has a sufficient number of
combinations of types to make the exhaustive reordering algorithm take prohibitively

long, the program could create and run an instance of the greedy algorithm instead.

5.2.5 Different Strategies

We implemented the following strategy modules for the Seekr program. A more

thorough discussion of their implementation and results can be found in Chapter 7.

Random

One strategy for ordering the fields of each class is to generate an order randomly.
This random order has no guarantees regarding proximity to the optimal (minimum)
number of macros, but in cases where the size of the program is large enough to make
exhaustive ordering prohibitive and the number of different orientations that result
in a macro count less than or equal to the result from greedy ordering is large, a
random strategy may be beneficial. As shown in Chapter 7, it is by far the fastest of
the strategies, although for many benchmarks it usually results in a large number of

macros compared to greedy.

37

Exhaustive

Another strategy is to try every ordering and count the number of macros for each
one, saving the ordering that requires the fewest macros. This strategy guarantees
the minimum number of macros, but makes no guarantees about time. In fact, as
the number of classes in a program and the number of fields in each class that are
actually referenced by instructions grows, the time to check all combinations grows
exponentially. In some cases, the time is between 3 and 5 minutes, but in other cases

the time is in the thousands of millennia, which is obviously unacceptable.

Greedy

The greedy algorithm described in Chatper 3 combines speed with effectiveness. In
practice it gets very close to optimal in all benchmark trials, and it does so in a very
small amount of time (comparable to Random). In fact, most of the time spent in
the greedy algorithm is for building the type and instruction tables, since these are
the parts of the program that use intensive file I/O. The greedy algorithm does not
produce optimal results, however, and in worst-case can be somewhat far away from

optimal.

5.3 Usage

The Seekr program and the required TypeTable and Finder utilities are all checked
in to the doc-repository under directories of the same name. All three programs are
needed to run Seekr, and the locations of the Finder and TypeTable directories must
be put into the CLASSPATH environment variable.

Seekr can be run from the Seekr/build directory using the following command-

line options:

Usage: Seekr [-vtrace -trace -tally -nopf -help -usage] <filename>

-vtrace Display verbose trace information

-itrace Display instruction trace information

-tally Generate chain length statistics for MacroSimulator input

-nopf Run the algorithm without considering putfields as
memory-accessing opcodes

-help Display this message

-usage

38

Display this message

The program will write the macros before and after reordering to files called

premacros.out and postmacros.out respectively. The program determines which re-

ordering strategy to use from the second parameter passed into the ClazFindr con-

structor, chosen from the following:

ClazFindr
ClazFindr
ClazFindr
ClazFindr

.NONE
.RANDOM
.GREEDY
.EXHAUSTIVE

No reordering

Use the random strategy

Use the greedy algorithm

Check every possible combination and use the

minimum

We used Seekr to run a number of experiments on the Java benchmarks, in-

cluding a test of all the different reordering strategies as well as a profile of the

benchmarks themselves. These tests are discussed in Chapter 7.

39

Chapter 6
The MacroSimulator Program

To get a better picture of the time saved from using our macro strategy for chains of
getfield and putfield instructions, we developed a graphical package that could

simulate the execution of a Java program.

6.1 Input: The .sprob and .sin files

We designed our input file so that it could be populated with data taken from an actual
Java program or generated randomly for easy testing. An .sprob file (Simulation
PROBability) contains a probabilistic representation of a finite state machine. This
state machine represented a Java program in that it could be used to build a series of
opcodes that are either getfields or non-indirection instructions. As a chain grows,
the probability that the next instruction will be a getfield goes down. We then
wrote a Perl script called sprob2sin that would translate this representation into a
more structured program-like representation using the given probabilities.

After studying a few of the output files, however, we realized that it would
be much simpler to treat the chains as “blocks” rather than treat each instruction
atomically. We made this decision because a program could have length-1 chains and
length-3 chains but no length-2 chains, and in our probabilistic model it resulted in
more longer chains than would be expected. Therefore we altered our protocol so

that an .sprob file is specified as follows:

e Total number of “blocks” (single instructions plus chains)

e Number of single instructions

40
e Number of chains of exactly length 1 ending with the getfield opcode

e Number of chains of exactly length 2 ending with the getfield opcode
e Number of chains of exactly length 3 ending with the getfield opcode
e Number of chains of length 4 or greater ending with the getfield opcode
e Number of chains of exactly length 1 ending with the putfield opcode
e Number of chains of exactly length 2 ending with the putfield opcode
e Number of chains of exactly length 3 ending with the putfield opcode

e Number of chains of length 4 or greater ending with the putfield opcode

Our Perl script uses the probabilities (each individual tally divided by the
total number of blocks) to generate a sequence of tokens equal to the total number of
blocks. In a large enough sample size, the ratios of the randomly-generated program
should tend to be about the same as the ratios in the original source program.

Each token in a .sin file (Simulation INstruction) is an integer that represents
a chain length. For the average program, most tokens are 0’s, which represent a
standard Java opcode that does not reference memory. A standalone getfield or
putfield that is not part of a chain is denoted by a 1. A chain of getfields that
ends in either a getfield or putfield is denoted by its length (including the closing

putfield if there is one present).

6.2 Using Seekr to Generate Simulator Input

To generate realistic .sprob files that would give us meaningful data, we added
functionality to the Seekr program that previously just searched for gestures. We
added 9 tally variables that keep track of different lengths/types of gestures. There
is a different variable for each length gesture from 0 to 4 or longer, then separate
variables for 1 through 4+ length gestures that end in putfields, since in the simulator
the time to execute a putfield and a getfield are different. When the tally option
is enabled, the program dumps the resulting numbers for each different length and

type of gesture to a file called log.sprob along with the total number of instructions.

41

File Options Help
CPU Bus Memory

Progress: g

Time Elapsed: 5604 Nanoseconds

I'.'.-'I
In R 1

Speed: A | I A R TR
P Dax 1x 2= 4x 8= 25x100x

Figure 6.1: The Simulator Main Screen

6.3 The ScavengeModel Class

This class is the guts of the simulator and is responsible for the actual simulation. It
takes in a .sin file and “executes” the program by calculating the amount of time it
would take to execute the instruction or chain based on provided time constants. The
program specifically takes into account time spent charging and using the memory
bus and time spent fetching data on main memory. All of these variables can be set
on the command line, and the program can also run a batch of executions in order
to get an average.

Upon completion, the program displays the total time to execute the program.
If MacroSimulator is running in batch mode, it will output the average time for a

single run (average to provide a general sense of the execution time for all runs).

6.4 The Visualizer

An optional plugin for the ScavengeModel is a Java Visualizer that allows the user to
open files and tweak variables using a traditional, menu-driven GUI as well as monitor
execution time and progress with a graphical representation. The representation

includes a display of where the process is currently operating (CPU, bus, or main

rHardware Operation Times - =

Use Reference Systemm: _ﬂﬁ.ﬂl'l.ilﬁz i_';anz]i b
| Getfield Instruction Time: 1000.0

’Mﬂn-l'l.l'lemury-n[:[:essing Instruction Time: |500.0

E{Nun-ﬁetﬁeld Instruction Time:) RSN

|
' Memary-Accessing Instruction Time: E000.0 |
|
|
|

'Memory Indirection Time: 0.0

Indirection Timing Percentages - =

Time Spent on Memony: 75.0 % . {2}]

| Time Spent on CPLU: 12.5 % . [_} :

?Time Spent on Bus: 125 % S P :
Ok Cancel

Figure 6.2: The Hardware Options Screen

memory) as well as a way for the user to adjust simulation speed (which does not affect
the timing numbers, only the speed in which instructions are displayed). Figure 6.1
shows a screen shot of the visualizer in action. The sliding bar at the bottom controls
simulation speed relative to “real-time”.

The Visualizer also has an easy menu system for inputting parameters such as
hardware speed and whether or not to use macros. The hardware menu, shown in
Figure 6.2 has built-in presets for a number of different processor configurations with
actual timing numbers taken from all of them. Using one of the presets, the user
can simulate the macro system on a number of different machines and measure the
impact of hardware speed on the effectiveness of the system.

The software options screen (Figure 6.3) lets the user set the percentage of
non-gesture instructions that access memory and specify whether or not to use a

simulated PIM system with macros to execute indirection chains.

43

~Program Variables- =

| Memory Accesses: 10.0 % 7 :
éUsg Macros for Multiple Indirections:]

Ok Cancel

Figure 6.3: The Software Options Screen

6.5 Usage

The MacroSimulator program has the following command line options; by default,

the visualizer is enabled.

java MacroSimulator [-f filename] [-m] [-q] [-hl

-m Multiple Indirections handled entirely by memory
(Otherwise on CPU).

-q Quiet Mode (Visualizer disabled)

-h Help

-b num Batch mode, where num is the number of times to run the
program. Will output the average execution time over
all runs.

-f file Load a file on startup, where file is the filename.

The -m switch is the command to use a simulated PIM to handle indirection
chains. Running the same program with and without this switch enabled will result
in a good approximation of times for the same program to run with and without
macros and provides a way to quantify the speedup.

When the program is run with the Visualizer enabled, there are a number of
keyboard shortcuts for common operations. Along with the ones shown in the menus,

the following shortcuts manipulate the simulation speed on the fly:

P Toggles between paused and running simulation
[up] Increase simulation speed

[right] Increase simulation speed

[down]
[left]

Decrease simulation speed

Decrease simulation speed

Our experiments using the Simulator are presented in Chapter 7.

44

45

Chapter 7
Experiments

Over the past two years, we have run a number of different experiments using the
software that we implemented. At first, the goal of our tests was to determine the
length of macros that are found in typical Java programs. Once we determined that
indirection chains did indeed exist, we wanted to know how many there were and how
to find them efficiently. The ultimate goal, though, was to test the greedy reordering
scheme outlined in Chapter 3 and measure its performance against other reordering
schemes. In this Section we detail all of the experiments we did and discuss their

results.

7.1 The Java Benchmarks

For most of the tests discussed here, we used the SPECjvm98 [14] collection of Java

benchmarks, which consists of the following programs:

_200_check: A program that tests features of the JVM including array indexing,

inheritance, and loops.

_201_compress: Modified Lempel-Ziv method that finds substrings and replaces

them with variable-sized code on the fly.
_202_jess: The Java Expert System Shell that solves a set of puzzles.
_205_raytrace: A ray tracer that works on a picture of a dinosaur.
_209_db: Performs database functions on a database residing in memory.

_213_javac: The Java compiler that comes packaged with JDK 1.0.2.

46

_222 _mpegaudio: An audio decompression utility.
_227_mtrt: A multithreaded variant of raytrace.

_228 jack: A Java parser generator.

7.2 Finding Indirection Chains with Javap

The first experiment we did was to find gestures using the javap [10] utility that
comes packaged with most Java installations. With the -c command-line switch we
were able to get a complete listing of the opcodes for each method of a Java .class
file. In this case we use the word gesture to define any group of consecutive getfield
opcodes of length greater than 1 that is surrounded by non-getfield opcodes. We
wrote a Perl script [3] to count the number and length of gestures in a single directory
of .class files. The script itself can be downloaded from the doc repository, where it
is located in the LucasFox/javap directory. To run it on a directory, simply run the
lucasTest script. The default benchmark location is /project/cytron/cytron/jvm98/,
but this line can be changed in the script to point to the directory to be scanned.
We chose to analyze directories as units because the set of Java benchmarks
that we used has each separate program in a single directory, and the Java packages
like Math and I0 also have all compiled classes in a source directory. The results of

this experiment can be found in Section 7.11.1.

7.3 Benchmark Statistics

We used the Seekr program outlined in Chapter 5 to gather some general data about
the Java benchmarks and get a more accurate count of length-2 and length-3 chains.
These counts now include putfield instructions in the chains thanks to the data
flow analysis capabilities of Clazzer. The information from this test helped to make
connections between program size and number of combinations and processing time as
well as provide a gauge for whether there are enough indirection chains in an average
Java program to make our macro idea worthwhile.

By adding some basic counters to Seekr, we were able to tally the number of
classes in the type table and the number of instructions in the instruction table. This
way, we could get some idea of the size of each program in terms of number of classes

and number of indirection instructions. We also did a simple calculation to compute

47
the number of combinations for the exhaustive search. We multiply the number of
referenced fields in each class together to find the number of combinations, since only
referenced fields need to be permuted and considered. The results of running this

verbose version of Seekr on the Java benchmarks can be found in Section 7.11.1

7.4 Seekr Timing Analysis

While Seekr is a much more robust and accurate program than Scavenge, it also takes
longer to run when performing the greedy reordering. This is not a big concern, since
the utility would only need to be run once on a Java program after compilation, but
we still wanted to get a better idea of which stage of execution caused the slowdown.

We used the Java System package’s current TimeMillis function to get the elapsed
execution time at different points of the program in order to put together a timing
analysis for each benchmark. The analysis calculates the percentage of total runtime
dedicated to type table construction, instruction table construction, initial macro
count, reordering, and final macro count. The results of the Seekr timing tests on all

Java benchmarks are in Section 7.11.2

7.5 Indirection Chain Execution Timing

The premise of this thesis is that we would gain some benefit from replacing longer
indirection chains with, from the CPU’s point of view, single calls to main memory.
But what if subsequent memory accesses are already much faster than the initial
access time in a chain? In order to verify the hypothesis that all memory accesses
take approximately the same amount of time, we measured the execution time in a
small Java program of indirection chains with lengths between one and five using a
high-resolution timing package.

One interesting aspect of the experiment we encountered was that if we ac-
cessed the same fields twice in a test, the second access would take a much shorter
time because the field contents would be held in system cache. Therefore, we tested
each chain length using entirely different objects and fields to ensure that cache would
not impact the times. We also measured the overhead of starting and stopping the
high-resolution timer and subtracted that time out of the final measurements. Thus,
the times that we measured should be accurate, taking into account only the execution

of the indirection chains themselves.

48

After measuring the times for each length and plotting them on a graph, we

used linear regression to fit a line through the points. The slope of this line represents
approximately the time penalty for each additional getfield instruction in a chain.

The graph and analysis of the results can be found in Section 7.11.2

7.6 Measuring Idea Feasibility with MacroSimula-

tor

Now that we knew the approximate execution times for indirections, we used these
numbers in the MacroSimulator to get a decent approximation for the speed gain
we could expect from our idea. We ran the benchmarks through Seekr to get the
required .sprob files then converted them to .sin files using sprob2sin. Finally, we
ran the .sin files through MacroSimulator both with and without using macros to see
what kind of numbers we got. We used an average of the execution times of a few
of Java’s non-memory-accessing opcodes when configuring the simulator to simulate

instructions not part of a gesture. The results of these tests are in Section 7.11.2.

7.7 Exhaustive Reordering

Because we wanted to gauge the success of a reordering strategy, we should know
the absolute minimum and maximum number of possible macros in a program. The
problem of finding an optimal reordering was shown to be NP-complete in Chap-
ter 2, so the only way (assuming P # NP) to find the maximum and minimum is
to check every possible field ordering for every class in a program. Because we de-
signed Seekr to be extensible in terms of reordering strategies, to run this test we
implemented a module that performs this exhaustive check. We called this module
ExhaustiveStrategy.

There are two stages to my method of reordering: the permute stage and the
combine stage. In the permute stage, we generate the possible orderings of fields
for each class. In the combine stage, we combine the classes together so that every

ordering of every class is tested with every ordering of every other class.

49
7.7.1 The Permute Stage

At first we tried to store every permutation of fields for each class, but this turned out
to be prohibitively costly. One class has 19 fields, yielding 19! = 1.22 x 10'7 different
permutations for just this class. This is easily large enough to cause the process to
run out of memory.

However, a simple heuristic that we incorporate into the Greedy strategy but
which also holds for any optimal strategy is that fields that are never accessed any-
where in the program can always be put at the end of every permutation for their
class. Therefore we only need to permute the subset of fields that are accessed by
the program in question and can append the remaining unused fields in any order as
long as we keep that order consistent.

By doing this, we cut down the permutation storage substantially, and it en-
abled us to be able to permute the fields of all classes in the Java benchmarks in a

very reasonable (no more than a minute or so) amount of time.

7.7.2 The Combine Stage

Initially we tried to use recursion and a large data structure to store all possible legal
combinations of the the class permutations for a program. However, the number of
combinations grows at an alarming rate based on the number of permutations there
are for each class. For example, we estimated the number of combinations required
for the Check benchmark at 6.688 x 109, This is also prohibitively large in terms of
size and space, and it causes the process to run out of memory during calculation.

Instead we calculated each combination on the fly using an odometer-like sys-
tem. In this system, we strung together the different classes into a linked list with
each permutation of that class acting as a “digit”. Combinations are formed by com-
bining the current “digits” of each class, then rotating the rightmost class to the next
“digit”. Once the rightmost class cycles through all of its permutations, it returns to
the starting “digit” and cycles the class immediately to its left by one permutation.
This behavior extends to all classes, so when the leftmost class cycles through all of
its permutations then we know that all possible combinations of “digits” have been
generated.

This approach allowed us to cut down immensely on storage space since we
could check the combination immediately and not have to save each one, and it also

reduced processing time since we would not be enduring the overhead of recursive calls

50
or spending the time to construct a large data structure and then iterating through
it. We ran the exhaustive search on each Java benchmark, and the results are in
Section 7.11.3.

7.8 Random Reordering

A problem with using the Exhaustive search numbers to approximate upper and lower
bounds for the benchmarks whose size prohibits us from running to completion is that
we are forced to make extrapolations after having checked only a small percentage of
the data. To get around this, we implemented a RandomStrategy reordering module
for Seekr that chooses a class permutation randomly for each class in the program
and measures the number of macros needed to cover this alignment. By running
this program many times, we can get a good random sample of field alignments and
measure statistics such as mean and standard deviation over each iteration. This
technique alleviates the problem introduced by the odometer method, specifically
that the “high digits” will never get checked in large programs, but it introduces
a randomness factor that removes any guarantees about finding actual minima or
maxima.

As with the exhaustive test, we ran Seekr with the RandomStrategy module

enabled on all of the Java benchmarks. The results are discussed in Section 7.11.3.

7.9 Greedy Reordering using Scavenge

Now that we had some baselines for comparison, we set out to test our greedy heuris-
tic. The first test of the greedy strategy, which is outlined in Chapter 3, was a simple
test using the Scavenge program. Recall that because of limitations in Scavenge —
specifically that only length-2 chains are treated — the results of this test would not
be totally accurate, but they did give us some idea of whether or not the greedy
algorithm was feasible to implement and whether it gave us any sort of improvement
over the out-of-box (OOB) field alignments of the benchmark classes. The results of
this test can be found in Section 7.11.3.

51
7.10 Greedy Reordering using Seekr

The most important test of the greedy strategy that we ran was to test it on Seekr.
This way we could compare its results to the results of the exhaustive and random
strategies in the same framework. Unlike the greedy test with Scavenge, this imple-
mentation took into account chains of any length that included both getfield and
putfield opcodes. We implemented a strategy module for Seekr called GreedyStrat-
egy that would perform our heuristic and put it to work on the Java benchmarks. We

discuss the results in Section 7.11.3.

7.11 Results

In this section we outline and discuss the results of all the experiments described in
the previous sections. The experiments are divided up into three groups based on
what we set out to measure in each one. The groups are indirection chain count,

timing, and reordering.

7.11.1 Indirection Chain Count Results

Javap

The results of the search for indirection chains using javap as outlined in Section in-
dirjavap were not very encouraging. Ideally we would have liked to see programs
with long getfield chains, as this would enable us to bypass the greatest number of
back-and-forth motions between the CPU and main memory. However, none of the
benchmarks nor the Java packages had any chains longer than length 2, and only
three of the seventeen directories checked had more than 14 length-2 chains. The
complete results are printed in Figure 7.1.

The discouraging results of this test did not cause us to give up, though. For
one thing, this script does not detect putfield instructions, since in Java byte code
a chain ending with the putfield operator has a push instruction in the middle that
puts the value to assign the field onto the stack.

As we discussed in section Section 1.1, the putfield instruction is still part
of a chain even though it does not come directly after the getfield operator. By
leaving these operators out, the script finds no length-3 chains, but we expect that a

more robust test that included putfield opcodes would find some.

52

‘ Package ‘ Double Indirections ‘ Triple Indirections ‘
_200_check 0 0
_201_compress 0 0
_202_jess 0 0
_205_raytrace 3 0
~209_db 0 0
_213_javac 216 0
_222 _mpegaudio 102 0
227 mtrt 0 0
_228_jack 14 0
_999_checkit 0 0
java.io 4 0
java.lang 0 0
java.math 0 0
java.net 0 0
java.security 0 0
java.text 44 0
java.util 3 0

Figure 7.1: Gesture Counts using Javap -c

Benchmark Statistics

Figure 7.2 shows the results of the more robust benchmark test using data flow
analysis discussed in Section 7.3, and clearly we were right in our conjecture that
length-3 chains do exist. In fact, in many of the benchmarks triple indirections are
more plentiful than double indirections, which is good news for us.

javac is by far the largest benchmark in terms of classes and indirection chains,
with jess, jbb, and check challenging for a distant second place. These numbers are
much more promising than the ones we obtained from the Javap script. Based on the
statistics, we could see some definite performance gains in a number of the benchmarks
with the macro implementation.

Incidentally, we used these numbers to calculate how much replacing consecu-
tive memory-accessing opcodes with a single macro-calling opcode would reduce code
size. Assuming that getfield and putfield instructions both are 3 bytes (1 byte for
the opcode, 2 bytes for the constant pool index) and that our macro-calling opcode
would also be 3 bytes (with the second 2 bytes now being an index into the macro

table), we calculated the space savings shown in Figure 7.2. The reductions turned

93

Benchmark Classes Chains Combinations Size
Double ‘ Triple Reduction

_200_check 65 48 18 66886041600 252 bytes
_201_compress 49 3 13 2304 87 bytes
_202_jess 144 26 32 31850496 270 bytes
_205_raytrace 76 7 16 331776 117 bytes
~209_db 58 3 13 2304 87 bytes
_213_javac 155 183 49 9.82 x 10* 843 bytes
_227 _mtrt 76 7 16 331776 117 bytes
_228_jack 88 18 24 55296 198 bytes
_999_checkit 59 3 16 13824 105 bytes
JBB 91 o8 32 5.55 x 10*° 366 bytes

Figure 7.2: Benchmark Statistics

out to be negligible when considering the overall size of the class files comprising the

benchmarks, shown in Figure 7.3.

7.11.2 Timing Results
Seekr Timing

The results of the timing tests on Seekr outlined in Section 7.4 can be found in
Figure 7.4, with all numbers representing percentage of benchmark execution time.
The percentages are graphed in Figure 7.5. The first two columns represent the time
to construct the type and instruction tables respectively. The final three columns
are the time required to count the macros before reordering, perform the greedy
reordering algorithm, and do the post-reorder count.

Clearly the majority of the time is spent constructing the type and instruction
tables. Because the type table is built recursively using an imported package, we
incur extra overhead in the added method calls, which explains the slowdown here.
The instruction table also uses a lot of the time-intensive functionality of the Clazzer
package.

One interesting thing to note is that in the larger benchmarks in terms of
number of classes and number of gestures, the greedy reordering takes a much larger

percentage of time than in the smaller benchmarks. This implies that the addition

o4

| Benchmark | Size (bytes) |

_200_check 32428
_201_compress 17745
_202_jess 345830
_205_raytrace 48999
~209_db 10064
_213_javac 1926681
_227_mtrt 119982
_228_jack 707
_999_checkit 5245

Figure 7.3: Benchmark Size

of more classes or gestures incurs a greater time penalty in the reordering algorithm
than in table construction.

The larger benchmarks do not have a marked increase in percentage of time
devoted to macro counts, however. This is an expected and desirable result that

means we can check lots of possible alignments in a reasonable amount of time.

Indirection Chain Timing

The resulting graph of the points and the fit line, Figure 7.6, shows that our hy-
pothesis from Section 7.5 was correct and that the relationship between chain length
and execution time is close to linear. The slope of the line is 8342.8ns per getfield
instruction, so we should expect to save about this amount of time for double indirec-
tions and about twice that for triple indirections. Of course, we only get this savings
in a system without cache.

In order to illustrate the incredible effect of cache, we graphed the execution
time for single, double, and triple indirections both with and without cache. The
results are in Figure 7.7. Clearly our work would not be much help on a system with

cache.

MacroSimulator Results

We ran the simulator both with and without macros on all of the benchmarks using

timing information taken from a Sparc system. The results are shown in Figure 7.8.

95

Benchmark Type Table | Instr. Table | Initial | Reorder | Final
Construction | Construction | Count Count
_200_check 48.48 37.17 0.16 14.19 0.01

201 _compress 57.6 38.48 0.08 3.85 0
_202_jess 52 40.89 0.16 6.95 0
_205_raytrace 53.58 41.1 0.08 5.24 0
_209_db 55.27 41.5 0.08 3.15 0
_213_javac 36.16 49.14 0.6 14.09 0
_227_mtrt 52.74 41.93 0.11 5.22 0
_228 _jack 50.39 42.04 0.09 7.48 0
_999_checkit 53.82 41.02 0.09 5.06 0
JBB 47.38 37.44 0.26 14.92 0

Figure 7.4: Seekr Timing Profile

Perc end of E xecution T e

B Postimacm Count

O Feorder

O Premacro Couant
E Instraction Table
O TypeTable

Figure 7.5: Timing Analysis of Benchmarks

o6

Indirection Timing
50000 -
45000 =
40000 "

35000 /

z I

@ 25000 // ;E::::r (actual)
20000 i
15000 /
10000 /

® y=183428x + 1160

5000 =787

ns)

Tim

0 1 2 3 4 5 B
Chain Length

Figure 7.6: Execution Time of an Indirection Chain vs. Chain Length

There is a good savings using macros for all of the benchmarks, especially jess and

javac. The graph in Figure 7.9 shows these numbers as well.

7.11.3 Field Reordering Results
Exhaustive Reordering

Using the system described in Section 7.7, we were able to get upper and lower
bounds on the number of macros for most of the Java benchmarks. Despite the
optimizations to our program, some of the benchmarks still took too long to run.
While the optimizations significantly reduced the number of combinations in most
cases, a significant reduction from a very large number is still a very large number.
For the benchmarks that would have taken prohibitively long to complete, we
had the exhaustive search module calculate the total number of field combinations
there are for each benchmark and how long it would take to finish checking all of them.
We found that, on average, the program can examine about 100,000 combinations per
minute on the machine we ran the tests on, and we used that number to calculate time

to finish. Figure 7.10 shows the calculated bounds and times for each benchmark.

o7

Memory Access Times

35000 -
30000
[7}]
2 25000
O
¢ 20000 =@ No Cache
7]
o 15000 m Cache
o
©
S 10000
5000
0 I |
1 2 3
Indirection Length
Figure 7.7: Indirection Chain Timing With and Without Cache
Benchmark Time (ns) Percent Gain
Without Macros | With Macros
_200_check 29510584 28066152 4.89%
_201_compress 15043107 14570036 3.14%
_202_jess 30694756 28813258 6.13%
_205_raytrace 21161973 20168000 4.70%
~209_db 17458063 17034889 2.42%
_213_javac 52677663 49832393 5.40%
227 mtrt 21347262 20245396 5.16%
_228 _jack 28316428 27343575 3.44%
_999_checkit 16260869 15403690 5.27%

Figure 7.8: Time Savings of the Macro Strategy from MacroSimulator

o8

O Witheu t Macws

B With Macws

Figure 7.9: Graph of Simulated Execution Time With and Without Macros

Benchmark H Min ‘ Max ‘ Done ‘ Combinations ‘ Completion Time ‘

_200_check 17 24 No 66886041600 1.27 Years
_201_compress 8 9 Yes 2304 1.38 Seconds

202 _jess 10 13 Yes 31850496 5.31 Hours
_205_raytrace 11 14 Yes 331776 3.32 Minutes
~209_db 8 9 Yes 2304 1.38 Seconds

_213_javac 26 34 No 9.82 x 107 1.86 x 10® Millennia

227 _mtrt 11 14 Yes 331776 3.32 Minutes
_228 jack 11 12 Yes 55296 33.18 Seconds
_999_checkit 9 12 Yes 13824 8.29 Seconds
jbb 21 29 No 5.55 x 10%° 105 Millennia

Figure 7.10: Resulting Bounds from Exhaustive Ordering

59

For JBB, the exhaustive strategy did not run long enough to encounter the
actual lower bound (we know this because the Greedy strategy results in 20 macros,
as discussed in Section 7.11.3). This is the danger of using this method to measure
bounds when the program does not finish. We have no real guarantee that any of the
incomplete tests came up with a number even reasonably close to the real minimum
for those programs, but without the aid of an extremely fast computer, they are the

best results we can get.

Random Reordering

Figure 7.11 shows the results of running the random reordering module on the Java
benchmarks. For each benchmark, we ran the program 25 times and measured the
mean number of macros and the minimum for that set of trials. From these results
we can really see the benefit of making the basic assumption that all referenced fields
should be placed before all unused fields in each class. Because the random strategy
does not make this assumption when randomly positioning each field, the mean is in
all cases higher and in many cases much higher than the maximum value obtained
from an exhaustive search.

We would expect that an increased number of trials per benchmark would result
in a lower minimum, but the 25 trials already take upwards of 15-20 minutes to run
for each benchmark. It is also worth noting that we ran the trials a few times during
the development process, and the means were very consistent over all cases. This
leads us to believe that even upping the number of trials considerably will not have
any effect on the average and that the observed mean is accurate. Clearly a strategy

involving random ordering is not desirable for any sort of real-world situation.

Greedy Reordering Using Scavenge

Figure 7.12 shows the results of running Scavenge on each of the benchmarks as
outlined in Section 7.9. The time represents the full runtime of the program, which
includes an initial macro count, the greedy reordering, and a final macro count to
judge the benefit. The program can also be run without the two macro counts; the
greedy algorithm runs in exactly the same manner but experimentally we cannot
verify the results. If the program were run in a real-world situation, we would not
care about the measuring the performance benefit, so we have also included the time

it takes to run the algorithm with the macro counting disabled. Since any sort of

60

| Benchmark | Mean (Macros) | Min (Macros) |

_200_check 25.92 24
_201_compress 10.76 9
_202_jess 19.48 16
_205_raytrace 16.76 14
_209_db 11.04 10
_213_javac 55.52 49
_227_mtrt 17.76 15
_228_jack 16.72 15
_999_checkit 13.56 12

Figure 7.11: Mean and Minimum from 25 Random Trials for Each Benchmark

reordering program would be a run-once application, a maximum time of around 20

seconds is pretty good.

Greedy Reordering Using Seekr

Once again we ran the strategy described in Section 7.10 and then immediately
counted the number of macros needed for program coverage. Armed with this infor-
mation, we put together all of the results from the different Seekr strategy modules
into one table. It is worth nothing that in terms of runtime the random strategy is
the fastest but it also is the least consistent. The exhaustive and greedy strategies
will return the same results for the same programs every time, but the exhaustive
strategy has the potential to take a much longer time to run.

Figure 7.13 shows the number of macros obtained from doing a greedy order-
ing as compared to the number out of the box, the maximum and minimum from
exhaustive, and the minimum from a random search of 25 trials. Of the benchmarks
that completed exhaustive reordering, the greedy algorithm came up with the opti-
mal alignment in every case. The numbers for greedy, maximum, and minimum are
graphed in Figure 7.14.

For the benchmarks that do not finish the exhaustive search, it is harder to
interpret results. In JBB, for instance, the greedy algorithm comes up with 20 macros
while exhaustive finds 21, but since exhaustive only checked one one-thousandth of
a percent of all possible combinations, we cannot make any statements about greedy

compared to this number.

61

Benchmark Macros Time (s)
OOB | Post-Greedy | (With Count) | (No Count)
_200_check 13 8 27.593 8.98
_201_compress 2 2 7.441 4.783
_202_jess 6 3 24.196 15.304
_205_raytrace 4 3 11.792 8.266
-209_db 2 2 8.964 5.438
213 _javac 19 9 63.928 19.93
227 _mtrt 21 16 15.466 8.04
_228 jack 3 3 11.303 11.747
999 _checkit 6 2 14.834 8.832

Figure 7.12: Performance Benefit of the Greedy Algorithm Using Scavenge (OOB is Out
of Box)

Benchmark Macros
0O0OB ‘ Maximum ‘ Random ‘ Greedy ‘ Minimum

_200_check 19 24 24 17 17
_201_compress 9 9 9 8 8
_202_jess 17 13 16 10 10
205_raytrace 13 14 14 11 11
_209_db 8 9 10 8 8
_213_javac 41 34 49 28 26
_227 _mtrt 11 14 15 11 11
_228 jack 14 12 15 11 11
_999_checkit 9 12 12 9 9
JBB 30 29 20 21

Figure 7.13: Algorithm Comparison in Seekr

62

Greedy Performance vs. Measured Bounds

e

B

g @ M asamum
E B Greedy

B i

% O Mimmmum
K|

Figure 7.14: Graph of Greedy Performance Against Measured Bounds

Since the runtimes are much shorter for greedy than for exhaustive on most of
the benchmarks, and because the greedy strategy gives us a guaranteed result where

random does not, we would say that our heuristic performed quite well on whatever

program we threw at it.

7.12 Experimental Conclusions

From running all these experiments, we learned that indirection chains do exist, they
can be found with javap -c but are found in greater numbers with data flow methods,
and reordering the fields in each class based on a simple heuristic reduces the number
of macros we need. We also discovered that the execution time for indirection chains

is linearly based on the length of the chain as long as none of the addresses to fetch

are cached.

63

Chapter 8
Conclusion

In this document, we designed and outlined a method for describing a series of
memory-accesses in Java bytecode. We also described a means for expressing these
series opcodes as gestures. At first we had no idea of the quantity or length of ges-
tures in real Java programs, but through experimentation we gathered enough data
to show that they are relatively plentiful.

Next we introduced the idea of macros on a PIM device which would do the
repeated fetching of a gesture without sending intermediary information back and
forth to the CPU. Much of my work was exploring the various ways of ordering the
field of Java .class files so that all gestures can be translated into the fewest number
of macros.

After showing that finding an optimal solution is an NP-complete problem,
we outlined a greedy algorithm and measured its effectiveness against a variety of
other methods including random ordering and a time-consuming exhaustive search.
In doing this, we implemented two programs that could actually reorder the fields
of a Java .class file. The first was a simplistic program for testing purposes only,
but the second is much more robust application that conceivably could be used in
real-world situations.

Finally, we authored a piece of customizable simulation software that let us
visualize the benefits of the PIM without actually implementing it in hardware. By
specifying the timing data for any system, this simulator could be used to measure

the performance of our macro strategy on that system.

64
8.1 Future Work

Based on our research, future work could actually implement the PIM using an FPGA
or other programmable hardware device. We successfully replaced a gesture with a
homemade custom opcode in a real Java program to test the feasibility, but a program
would have to be written to not only replace all gestures but also to interpret the
new custom opcode in the JVM. There are a number of free opcodes that Sun left
for programmers to define as they see fit, but any attempt at running a program
using one of these opcodes on an existing JVM would fail. There are any number of
open source Virtual Machines that run under various environments, and any of these
could be adapted to handle the new opcodes and communicate with the PIM using
assembly or some other low-level machine code.

Another interesting issue is that of cache. Because the time it takes to run
indirection chains that access main memory relates linearly with the length of the
chain, we could expect a good speedup if we push this processing to some sort of
intelligent processor in main memory.

However, indirections chains that accessed cached information did not take
longer to execute as chain length got longer. In fact, a long chain accessing only
cached data ran even faster than a single access of main memory. Therefore, forcing
a program to always use main memory may end up slowing down one that contained
a lot of repetitive memory fetch patterns. Future work could be done exploring this
phenomenon and perhaps developing some sort of controller that could decide whether
to go straight to cache or use our PIM based on which would result in a faster fetch

time. Our concept could also be implemented directly in cache.

8.2 Final Thoughts

Ever since its infancy, Java has been both praised for being easy to learn and scorned
for being bulky and slow. Now that the language is becoming more mature and the
first language of a new generation of programmers, it is more important than ever
that we make every effort to keep the front-end simple while making the back-end
more efficient.

The idea of a PIM, if made to work in coordination with system cache, could

result in a smaller code footprint and faster execution for many programs without

65
any additional work on the user end and only a small amount of one-time additional

overhead at compile time.

66

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

Matt Curtin. Write once, run anywhere: Why it matters. java.sun.com/
features/1998/01/wora.html, 1998.

ej-technologies GmbH. Jclasslib 1.1. www.ej-technologies.com/products/
jclasslib/java.html, 2001.

Lucas M. Fox. Memory-Accessing Optimization Via Gestures. Master’s thesis,
Washington University in St. Louis, 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman,
San Francisco, CA, 1979.

R.M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85-103.
Plenum Press, New York, NY, 1972.

Peter M. Kogge, T. Sunaga, and e. a. E. Retter. Combined DRAM and Logic
Chip for Massively Parallel Applications. In ITEEE Conference on Advanced
Research in VLSI, Raleigh, NC, 1995.

Tom Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Reading, Massachusetts, 1997.

Martin R. Linenweber. A Study in Java ByteCode Engineering with PCESjava.
Master’s thesis, Washington University in St. Louis, 2003.

Sun Microsystems. javap - The Java Class File Disassembler. http://java.
sun.com/j2se/1.3/docs/tooldocs/solaris/javap.html, 2001.

67
[11] David Patterson et al. Intelligent RAM (IRAM): Chips That Remember and

Compute. In IEEFE International Solid-State Circuits Conference, San Francisco,
CA, February 1997.

[12] T.A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In
Conference Record of the 22nd Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 322-332, San Francisco, CA, 1995.

[13] Stephen Shankland. Sun redials java for cell phones. news.com.com/
2100-1033-941504 .html, 2002.

[14] SPEC. Specjvm98 benchmarks. www.spec.org/osg/jvm98, 1998.

68

Vita

Christopher R. Hill

Date of Birth February 26, 1980
Place of Birth Orlando, Florida

Degrees Master of Science, Computer Science
Washington University in Saint Louis, May 2004

Bachelor of Science Magna Cum Laude, Computer Science
Washington University in Saint Louis, May 2002

Publications Lucas M. Fox, Christopher R. Hill, Ron K. Cytron, and Kr-
ishna Kavi. Optimization of Storage-Referencing Ges-
tures. In Proceedings of the ACM CASES 03 Workshop:
Compilers and Tools for Constrained Embedded Systems,
October 2003

May, 2004

	Static Analysis of Memory-Accessing Gestures in Java
	Recommended Citation
	Static Analysis of Memory-Accessing Gestures in Java

	tmp.1470340445.pdf.00g99

	Abstract: Abstract: We propose the notion of Java-program gestures that are composed of a series of memory-accessing instructions. By finding patterns in gestures whose execution can be atomic, we can load them in an intelligent memory controller. This process can improve performance of the Java Virtual Machine, decrease code footprint, and reduce power consumption in hardware.

In this thesis we formally define a language of gestures and introduce a method of detecting them statically at compile-time. We introduce a simple heuristic for reducing the number of gestures that must be loaded into the memory controller and show that finding the minimum number is NP-Complete. We profile the performance of this algorithm extensively on a set of Java benchmarks.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: March 29, 2004
	Author: Authors: Hill, Christopher R.
	Title: Static Analysis of Memory-Accessing Gestures in Java - Master's Thesis, May 2004
	ReportNumber: 2004-13
	DepartmentName: Department of Computer Science & Engineering

