342 research outputs found

    Multigene analyses identify the three earliest lineages of extant flowering plants

    Get PDF
    AbstractFlowering plants (angiosperms) are by far the largest, most diverse, and most important group of land plants, with over 250,000 species and a dominating presence in most terrestrial ecosystems. Understanding the origin and early diversification of angiosperms has posed a long-standing botanical challenge [1]. Numerous morphological and molecular systematic studies have attempted to reconstruct the early history of this group, including identifying the root of the angiosperm tree. There is considerable disagreement among these studies, with various groups of putatively basal angiosperms from the subclass Magnoliidae having been placed at the root of the angiosperm tree (reviewed in [2–4]). We investigated the early evolution of angiosperms by conducting combined phylogenetic analyses of five genes that represent all three plant genomes from a broad sampling of angiosperms. Amborella, a monotypic, vesselless dioecious shrub from New Caledonia, was clearly identified as the first branch of angiosperm evolution, followed by the Nymphaeales (water lilies), and then a clade of woody vines comprising Schisandraceae and Austrobaileyaceae. These findings are remarkably congruent with those from several concurrent molecular studies [5–7] and have important implications for whether or not the first angiosperms were woody and contained vessels, for interpreting the evolution of other key characteristics of basal angiosperms, and for understanding the timing and pattern of angiosperm origin and diversification

    Vegetation Structure of Mangrove Ecosystems in Panama

    Get PDF
    Mangroves provide important habitat for terrestrial and marine wildlife. They buffer shorelines from flooding and sequester excess nutrients and pollutants in runoff before reaching rivers and oceans. Mangroves provide a wintering habitat for migratory bird species. These habitats are being rapidly lost to coastal development. This research focused on assessing the vegetation structure of mangrove ecosystems in Panama

    On the Insignificance of Photochemical Hydrocarbon Aerosols in the Atmospheres of Close-in Extrasolar Giant Planets

    Get PDF
    The close-in extrasolar giant planets (CEGPs) reside in irradiated environments much more intense than that of the giant planets in our solar system. The high UV irradiance strongly influences their photochemistry and the general current view believed that this high UV flux will greatly enhance photochemical production of hydrocarbon aerosols. In this letter, we investigate hydrocarbon aerosol formation in the atmospheres of CEGPs. We find that the abundances of hydrocarbons in the atmospheres of CEGPs are significantly less than that of Jupiter except for models in which the CH4_4 abundance is unreasonably high (as high as CO) for the hot (effective temperatures ≳1000\gtrsim 1000 K) atmospheres. Moreover, the hydrocarbons will be condensed out to form aerosols only when the temperature-pressure profiles of the species intersect with the saturation profiles--a case almost certainly not realized in the hot CEGPs atmospheres. Hence our models show that photochemical hydrocarbon aerosols are insignificant in the atmospheres of CEGPs. In contrast, Jupiter and Saturn have a much higher abundance of hydrocarbon aerosols in their atmospheres which are responsible for strong absorption shortward of 600 nm. Thus the insignificance of photochemical hydrocarbon aerosols in the atmospheres of CEGPs rules out one class of models with low albedos and featureless spectra shortward of 600 nm.Comment: ApJL accepte

    Phylogeography of the Central American lancehead Bothrops asper (SERPENTES: VIPERIDAE)

    Get PDF
    The uplift and final connection of the Central American land bridge is considered the major event that allowed biotic exchange between vertebrate lineages of northern and southern origin in the New World. However, given the complex tectonics that shaped Middle America, there is still substantial controversy over details of this geographical reconnection, and its role in determining biogeographic patterns in the region. Here, we examine the phylogeography of Bothrops asper, a widely distributed pitviper in Middle America and northwestern South America, in an attempt to evaluate how the final Isthmian uplift and other biogeographical boundaries in the region influenced genealogical lineage divergence in this species. We examined sequence data from two mitochondrial genes (MT-CYB and MT-ND4) from 111 specimens of B. asper, representing 70 localities throughout the species' distribution. We reconstructed phylogeographic patterns using maximum likelihood and Bayesian methods and estimated divergence time using the Bayesian relaxed clock method. Within the nominal species, an early split led to two divergent lineages of B. asper: one includes five phylogroups distributed in Caribbean Middle America and southwestern Ecuador, and the other comprises five other groups scattered in the Pacific slope of Isthmian Central America and northwestern South America. Our results provide evidence of a complex transition that involves at least two dispersal events into Middle America during the final closure of the Isthmus

    Trait differentiation and modular toxin expression in palm-pitvipers

    Get PDF
    Background Modularity is the tendency for systems to organize into semi-independent units and can be a key to the evolution and diversification of complex biological systems. Snake venoms are highly variable modular systems that exhibit extreme diversification even across very short time scales. One well-studied venom phenotype dichotomy is a trade-off between neurotoxicity versus hemotoxicity that occurs through the high expression of a heterodimeric neurotoxic phospholipase A2 (PLA2) or snake venom metalloproteinases (SVMPs). We tested whether the variation in these venom phenotypes could occur via variation in regulatory sub-modules through comparative venom gland transcriptomics of representative Black-Speckled Palm-Pitvipers (Bothriechis nigroviridis) and Talamancan Palm-Pitvipers (B. nubestris). Results We assembled 1517 coding sequences, including 43 toxins for B. nigroviridis and 1787 coding sequences including 42 toxins for B. nubestris. The venom gland transcriptomes were extremely divergent between these two species with one B. nigroviridis exhibiting a primarily neurotoxic pattern of expression, both B. nubestris expressing primarily hemorrhagic toxins, and a second B. nigroviridis exhibiting a mixed expression phenotype. Weighted gene coexpression analyses identified six submodules of transcript expression variation, one of which was highly associated with SVMPs and a second which contained both subunits of the neurotoxic PLA2 complex. The sub-module association of these toxins suggest common regulatory pathways underlie the variation in their expression and is consistent with known patterns of inheritance of similar haplotypes in other species. We also find evidence that module associated toxin families show fewer gene duplications and transcript losses between species, but module association did not appear to affect sequence diversification. Conclusion Sub-modular regulation of expression likely contributes to the diversification of venom phenotypes within and among species and underscores the role of modularity in facilitating rapid evolution of complex traits

    Chromophores in molecular nanorings : when is a ring a ring?

    Get PDF
    The topology of a conjugated molecule plays a significant role in controlling both the electronic properties and the conformational manifold that the molecule may explore. Fully Ο€-conjugated molecular nanorings are of particular interest, as their lowest electronic transition may be strongly suppressed as a result of symmetry constraints. In contrast, the simple Kasha model predicts an enhancement in the radiative rate for corresponding linear oligomers. Here we investigate such effects in linear and cyclic conjugated molecules containing between 6 and 42 butadiyne-linked porphyrin units (corresponding to 600 C–C bonds) as pure monodisperse oligomers. We demonstrate that as the diameter of the nanorings increases beyond ∼10 nm, its electronic properties tend toward those of a similarly sized linear molecule as a result of excitation localization on a subsegment of the ring. However, significant differences persist in the nature of the emitting dipole polarization even beyond this limit, arising from variations in molecular curvature and conformation

    Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data

    Get PDF
    Background: Estimates of relationships among Staphylococcus species have been hampered by poor and inconsistent resolution of phylogenies based largely on single gene analyses incorporating only a limited taxon sample. As such, the evolutionary relationships and hierarchical classification schemes among species have not been confidently established. Here, we address these points through analyses of DNA sequence data from multiple loci (16S rRNA gene, dnaJ, rpoB, and tuf gene fragments) using multiple Bayesian and maximum likelihood phylogenetic approaches that incorporate nearly all recognized Staphylococcus taxa. Results: We estimated the phylogeny of fifty-seven Staphylococcus taxa using partitioned-model Bayesian and maximum likelihood analysis, as well as Bayesian gene-tree species-tree methods. Regardless of methodology, we found broad agreement among methods that the current cluster groups require revision, although there was some disagreement among methods in resolution of higher order relationships. Based on our phylogenetic estimates, we propose a refined classification for Staphylococcus with species being classified into 15 cluster groups (based on molecular data) that adhere to six species groups (based on phenotypic properties). Conclusions: Our findings are in general agreement with gene tree-based reports of the staphylococcal phylogeny, although we identify multiple previously unreported relationships among species. Our results support the general importance of such multilocus assessments as a standard in microbial studies to more robustly infer relationships among recognized and newly discovered lineages

    Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (<it>Pantherophis slowinskii</it>) and two cottonmouths (<it>Agkistrodon piscivorus</it>) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence.</p> <p>Results</p> <p>We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs.</p> <p>Conclusion</p> <p>Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and among-gene variation in rate dynamics observed in snakes is the most extreme thus far observed in animal genomes, and provides an important study system for further evaluating the biochemical and physiological basis of evolutionary pressures in vertebrate mitochondria.</p

    Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (\u3ci\u3eCrotalus cerastes\u3c/i\u3e) lineages reveal little differential expression despite individual variation

    Get PDF
    Changes in gene expression can rapidly influence adaptive traits in the early stages of lineage diversification. Venom is an adaptive trait comprised of numerous toxins used for prey capture and defense. Snake venoms can vary widely between conspecific populations, but the influence of lineage diversification on such compositional differences are unknown. To explore venom differentiation in the early stages of lineage diversification, we used RNA-seq and mass spectrometry to characterize Sidewinder Rattlesnake (Crotalus cerastes) venom. We generated the first venom-gland transcriptomes and complementary venom proteomes for eight individuals collected across the United States and tested for expression differences across life history traits and between subspecific, mitochondrial, and phylotranscriptomic hypotheses. Sidewinder venom was comprised primarily of hemorrhagic toxins, with few cases of differential expression attributable to life history or lineage hypotheses. However, phylotranscriptomic lineage comparisons more than doubled instances of significant expression differences compared to all other factors. Nevertheless, only 6.4% of toxins were differentially expressed overall, suggesting that shallow divergence has not led to major changes in Sidewinder venom composition. Our results demonstrate the need for consensus venom-gland transcriptomes based on multiple individuals and highlight the potential for discrepancies in differential expression between different phylogenetic hypotheses

    Methanol on Enceladus

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95284/1/grl26203.pd
    • …
    corecore