# Multigene analyses identify the three earliest lineages of extant flowering plants

Christopher L. Parkinson, Keith L. Adams and Jeffrey D. Palmer

Flowering plants (angiosperms) are by far the largest, most diverse, and most important group of land plants, with over 250,000 species and a dominating presence in most terrestrial ecosystems. Understanding the origin and early diversification of angiosperms has posed a long-standing botanical challenge [1]. Numerous morphological and molecular systematic studies have attempted to reconstruct the early history of this group, including identifying the root of the angiosperm tree. There is considerable disagreement among these studies, with various groups of putatively basal angiosperms from the subclass Magnoliidae having been placed at the root of the angiosperm tree (reviewed in [2-4]). We investigated the early evolution of angiosperms by conducting combined phylogenetic analyses of five genes that represent all three plant genomes from a broad sampling of angiosperms. Amborella, a monotypic, vesselless dioecious shrub from New Caledonia, was clearly identified as the first branch of angiosperm evolution, followed by the Nymphaeales (water lilies), and then a clade of woody vines comprising Schisandraceae and Austrobaileyaceae. These findings are remarkably congruent with those from several concurrent molecular studies [5-7] and have important implications for whether or not the first angiosperms were woody and contained vessels, for interpreting the evolution of other key characteristics of basal angiosperms, and for understanding the timing and pattern of angiosperm origin and diversification.

Address: Department of Biology, Jordan Hall, 1001 E. Third Street, Indiana University, Bloomington, Indiana 47405, USA.

Correspondence: Jeffrey D. Palmer E-mail: jpalmer@bio.indiana.edu

Received: 12 October 1999 Revised: 8 November 1999 Accepted: 8 November 1999

Published: 6 December 1999

Current Biology 1999, 9:1485-1488

0960-9822/99/\$ – see front matter © 1999 Elsevier Science Ltd. All rights reserved.

### Results and discussion

Our efforts to identify the earliest angiosperms emphasized mitochondrial genes, in order to capitalize on the low rate of nucleotide substitutions in plant mitochondrial genomes [8]. Most of the sequences for the three mitochondrial genes analyzed (mtSSU rDNA, *cox1* and *rps2*) were generated in this study, whereas sequences for the chloroplast *rbcL* and nuclear SSU rDNA genes are largely from GenBank. Forty-five diverse angiosperms, representing all major lineages of basal angiosperms, were included in the study, with six gymnosperms used as outgroups for comparison. Our sampling of angiosperms was based largely on the 1997 study by Soltis *et al.* [9] and the 1998 review by Doyle [3]. Gnetales, thought on morphological grounds to be the sister group of angiosperms [4], were not included as outgroups because recent molecular studies [7,10,11] indicate that they are instead gymnosperms with high rates of sequence evolution.

Individual analyses of the five genes yielded relatively poorly resolved trees; but importantly, the trees were not visibly incongruent with one another (see Supplementary material). Therefore, we deemed it both appropriate and necessary, in order to obtain better resolved and supported trees, to combine the five genes into a single, total molecular evidence data set. This yielded an alignment of 51 taxa with 6564 characters, of which 2393 were variable and 1391 were informative for parsimony analysis. The data were analyzed by maximum parsimony and maximum likelihood, using three methods to assess internal branch support (see Supplementary material).

The maximum-parsimony and maximum-likelihood analyses revealed that Amborella trichopoda (the sole member of the Amborellaceae) is the first branch of angiosperm evolution (Figure 1). This placement was strongly supported by both maximum-parsimony analyses (89% bootstrap support and a decay value of 9 steps) and maximum-likelihood analyses (94% bootstrap and 99% relative likelihood support). Amborella is an evergreen, dioecious shrub endemic to New Caledonia; it lacks vessels and contains many distinctive characteristics that are considered to be ancestral or erratic [12]. A monophyletic Nymphaeales (water lilies and related aquatic plants) was found to be the second branch of the angiosperm tree, while the third lineage was found to comprise Austrobaileyaceae and Schisandraceae (woody vines), with both placements being highly supported (Figure 1). Studies with more extensive taxonomic sampling have shown that Illiciaceae and Trimeniaceae also belong to the Austrobaileyaceae/Schisandraceae clade [6,7,9,13].

Our placement of *Amborella*, Nymphaeales, and Austrobaileyaceae/Schisandraceae as the three earliest groups of angiosperms does not appear to be an artifact of long branch attraction (the tendency of relatively divergent





Angiosperm relationships from a combined analysis of five genes. The topology shown is from maximum-likelihood analysis (log likelihood = -48543.97). Numbers on selected nodes are from top to bottom: maximum-parsimony bootstrap values, maximum-likelihood bootstrap values, maximum-likelihood relative likelihood support values, and maximum-parsimony decay values. Asterisks indicate all maximum-parsimony bootstrap values that are > 90%.

branches in a phylogenetic tree to erroneously group together to the exclusion of intervening short branches due to excessive parallel and convergent changes on the long branches) to the very long branch separating the angiosperm ingroup from the gymnosperm outgroups. The branches leading to these three angiosperm groups are not notably long, and unrooted maximum-parsimony and maximum-likelihood analyses — that is, with gymnosperms excluded — of the combined data set yielded unrooted networks that were topologically equivalent to the rooted trees of Figure 1 with respect to the placement of *Amborella*, Nymphaeales, and Austrobaileyaceae/Schisandraceae relative to each other and to other angiosperms. In addition, alternative topology testing using the maximumlikelihood KH test [14] was performed to investigate various hypotheses for the earliest branch of the angiosperm tree. Placement of *Amborella* as the basal-most member of Nymphaeales, or switching the position of *Amborella* and Nymphaeales, was not statistically different at the 5% level from the topology presented in Figure 1. Significant differences were found, however, between the best maximum-likelihood tree and topologies in which the basal branch of angiosperms was designated as Austrobaileyaceae/Schisandraceae, the Magnoliales, *Ceratophyllum*, or the monocots. Thus, the maximum-likelihood analyses reject all angiosperms except for *Amborella* and/or Nymphaeales as the earliest angiosperms. It should be stressed that the KH test compares, for a particular data set, log likelihood scores for the entirety of the best tree with those of designated alternative topologies. Thus, a single nearest-neighbor interchange (as with *Amborella* and the Nymphaeales) might not cause a significant change in the overall tree likelihood score, even if it disrupts a node that is strongly supported by the bootstrap and other support indices.

Several concurrent multigene studies [5-7] (S. Graham and R. Olmstead, personal communication) have identified, with modest-to-high support, the same three basal branches of angiosperm evolution as recovered in our analyses (Figure 1). This remarkable confluence of congruent results was foreshadowed, in one part or another, in several earlier, mostly single-gene studies. Amborella was the most basal in a subset of nuSSU rDNA trees in the 1997 study by Soltis et al. [9], while two 1993 rbcL studies [15,16] first suggested that Amborella is closely related to the Nymphaeales (but did not place it as the first branching angiosperm). The Nymphaeales were placed at the base of the angiosperm tree in several early molecular studies [2,17-20], although Amborella was not included in any of them and support for the Nymphaeales placement was not high. An early origin of Austrobaileyaceae and relatives was first suggested by the 1997 nuSSU study of Soltis et al. [9].

The complete agreement between our study and concurrent multigene studies [5-7] (S. Graham and R. Olmstead, personal communication) as to the three basal lineages of angiosperms gives us great confidence that the evolutionary root of flowering plants has finally been resolved. Thus, other groups, such as Magnoliales, Ceratophyllaceae, and Chloranthaceae, which have previously been considered as candidates for the earliest angiosperms (reviewed in [2-4]), should no longer be regarded as such. Relationships are poorly resolved among these latter three groups and the five other, now clearly non-basal, groups in our study. Of the five multiply sampled groups, four (monocots, Laurales, Magnoliales, and eudicots) are well supported as being monophyletic (monophyly of Piperales is only weakly supported), but relationships among these groups and the Chloranthaceae, Ceratophyllaceae, and Winteraceae differ between maximum-parsimony and maximumlikelihood analyses and are poorly supported. Better sampling, of both taxa and genes, is evidently needed to resolve these relationships (see for example [6,7]). Relationships within monocots are well resolved, with Acorus

the most basal, as suggested in previous studies (for example [6,15]). Relationships within eudicots are generally consistent with other, more extensive studies (for example [6,7,15,21]); clade support is high for some groups but low for others.

Identification of the three earliest angiosperm groups provides the opportunity to infer features of the common ancestor of extant angiosperms, and to reevaluate the evolution of morphological, anatomical, and biochemical characteristics in basal angiosperms. Amborella and the Nymphaeales lack ethereal oil cells [22], and in all three first-branching groups, closure of carpel margins occurs by secretion [23-25]. Our phylogeny suggests that these traits are ancestral among angiosperms. A long-standing issue is whether the first angiosperms were woody or herbaceous. Amborella is a woody shrub, and the Austrobaileyaceae and Schisandraceae are both woody vines (the Illiciaceae and Trimeniaceae are lianas and small trees), whereas the Nymphaeales are herbaceous [22]. This suggests, although not persuasively, that the common ancestor of extant angiosperms was woody, with the Nymphaeales being derived from a woody ancestor. Amborella apparently lacks vessels [26,27], suggesting that the ancestral angiosperm condition was vesselless. The very recent discovery of vessels in some Nymphaeales ([28] and references therein), however, emphasizes the importance of reexamining Amborella. Our phylogeny suggests that the flowers of the first branching angiosperms were neither the small and very reduced flowers of the Piperales and Chloranthaceae, nor the large multiparted flowers of the Magnoliales (reviewed in [1,29]), but were more likely to be intermediate between these extremes. Although some Nymphaeales species have multiparted flowers, this has been proposed to represent a derived condition [30].

Results from this study also have implications for the timing and pattern of angiosperm origin and diversification. The earliest unambiguously angiosperm fossils are 120–130 million years old [1,31], and, where assignable, belong to groups that have been defined in our study as non-basal, such as Magnoliales, Winteraceae, Chloranthaceae, monocots, and eudicots [1,32]. This suggests an even earlier origin for Amborella, Nymphaeales, and the Austrobaileyaceae group. If fossils documenting this early period of angiosperm evolution are eventually recovered, it will be interesting to see how deeply they cut into what is now a very lengthy period (100-200 million years) of stem-group evolution that connects extant angiosperms to their sister group, either the extinct Bennettitales and Caytonia and/or extant gymnosperms [3,10,11]. That Amborella, the first branch of angiosperm evolution, is monotypic, and that the next two groups are relatively small (~160 species in total [22]), is consistent with the suggestion of Sanderson and Donoghue [33] that early angiosperm evolution was not characterized by the high diversification rates found in many groups of latter-day angiosperms, although massive extinction within these early lineages cannot be ruled out either.

#### Supplementary material

Supplementary material, including a complete list of plant names, DNA voucher information, GenBank accession numbers for the sequences used in this study, and all molecular and phylogenetic methodology, is available at http://current-biology.com/supmat/supmatin.htm.

### Acknowledgements

We thank B. Thomason, B. Hall, T. Vincent, Y. Cho, R. Price, and C. dePamphilis for providing some of the sequences for this study, Y-L. Qiu for several DNAs, and M. Donoghue, S. Graham, S. Mathews, R. Olmstead, Y-L. Qiu, D. Soltis, P. Soltis and M. Zanis for sharing unpublished data. Financial support was provided by NIH F32 GM-19225 to C.L.P., USDA training grant 95-38420-2214 to K.L.A., and NIH RO1-GM35087 to J.D.P.

### References

- 1. Crane PR, Friis EM, Pedersen KR: The origin and early diversification of angiosperms. *Nature* 1995, **347**:27-33
- 2. Donoghue MJ, Mathews S: Duplicate genes and the root of angiosperms, with an example using phytochrome sequences. *Mol Phylogenet Evol* 1997, **9**:489-500.
- Doyle JA: Phylogeny of vascular plants. Annu Rev Ecol Syst 1998, 29:567-599.
- Doyle JA: Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Mol Phylogenet Evol 1998, 9:448-462.
- Mathews S, Donoghue MJ: The root of angiosperm phylogeny inferred from duplicate phytochrome genes. *Science* 1999, 286:947-950.
- Soltis PS, Soltis DE, Chase MW: Angiosperm phylogeny inferred from multiple genes: a research tool for comparative biology. *Nature* 1999, 402:402-404.
- Qiu Y-L, Lee J, Bernasconi-Quadroni B, Soltis DE, Soltis PS, Zanis M, et al.: The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. *Nature* 1999, 402:404-407.
   Wolfe KH, Li W-H, Sharp PM: Rates of nucleotide substitution vary
- Wolfe KH, Li W-H, Sharp PM: Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 1987, 84:9054-9058.
- Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn W, Hoot S, et al.: Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann Missouri Bot Gard 1997. 84:1-49
- sequences. Ann Missouri Bot Gard 1997, 84:1-49.
  Chaw S-M, Parkinson CL, Cheng Y, Vincent TM, Palmer JD: Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 1999, in press.
- 11. Bowe LM, Coat G, dePamphilis CW: Phylogeny of seed plants based on all three plant genomic compartments: extant gymnosperms are monophyletic and Gnetales are derived conifers. *Proc Natl Acad Sci USA* 1999, in press.
- Nandi OI, Chase MW, Endress PK: A combined cladistic analysis of angiosperms using *rbcL* and non-molecular data sets. *Ann Missouri Bot Gard* 1998, 85:137-212.
- Renner SS: Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. *Amer J Bot* 1999, 86:1301-1315.
- Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985, 22:160-174.
- Chase MW, Soltis DE, Olmstead RG, Morgan D, Duvall MR, Price RA, et al.: Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 1993, 80:528-580.
- Qiu Y-L, Chase MW, Les DH, Parks CR: Molecular phylogenetics of the Magnoliidae: cladistic analysis of nucleotide sequences of the plastid gene *rbcL*. Ann Missouri Bot Gard 1993, 80:587-606.
- Hamby RK, Zimmer EA: Ribosomal RNA as a phylogenetic tool in plant systematics. In *Molecular Systematics of Plants*. Edited by Soltis PS, Soltis DE, Doyle JJ. New York: Chapman and Hall, 1992.
   Doyle JA, Donoghue MJ, Zimmer EA: Integration of morphological
- Doyle JA, Donoghue MJ, Zimmer EA: Integration of morphological and ribosomal RNA data on the origin of angiosperms. *Ann Missouri Bot Gard* 1994, 81:419-450.

- Goremykin, V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W: Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to *rbcL* data do not support Gnetalean affinities of angiosperms. *Mol Biol Evol* 1996, 13:383-396.
- Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH: Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. *Mol Biol Evol* 1997, 14:56-68.
- 21. Hoot S, Magallon S, Crane PR: Phylogeny of basal eudicots based on three molecular data sets: *atpB*, *rbcL*, and 18S nuclear ribosomal sequences. *Ann Missouri Bot Gard* 1999, 86:1-32.
- 22. Cronquist A: An Integrated System of Classification of Flowering Plants. New York: Columbia University Press; 1981.
- Igershem A, Endress PK: Gynoecium diversity and systematics of the magnoliales and winteroids. *Bot J Linn Soc* 1997, 124:213-271.
- 24. Endress PK, Igershem A: Gynoecium diversity and systematics of the laurales. *Bot J Linn Soc* 1997, **125**:93-168.
- 25. Igershem A, Endress PK: Gynoecium diversity and systematics of the paleoherbs. *Bot J Linn Soc* 1998, **127**:289-370.
- Bailey IW, Swamy BGL: *Amborella trichopoda* Bail., a new morphological type of vesselless dicotyledon. *J Arnold Arbor* 1948, 29:245-254.
- 27. Metcalfe CR: *Anatomy of the Dicotyledons*. Oxford: Clarendon Press; 1987.
- Schneider EL, Carlquist S: Vessels in *Brasenia* (Cabombaceae): new perspectives on vessel origin in primary xylem of angiosperms. *Amer J Bot* 1996, 83:1236-1240.
- Endress P: Floral structure and evolution of primitive angiosperms: recent advances. *Plant Syst Evol* 1994, 192:79-97.
- Les DH, Schneider EL, Padgett DL, Soltis PS, Soltis DE, Zanis M: Phylogeny, classification and floral evolution of water lilies (Nymphaeaceae; Nymphaeales): a synthesis of non-molecular, rbcL, matK, and 18S rDNA data. Syst Bot 1999, 24:28-46.
- Swisher III CC, Wang Y-Q, Wang X-L, Xu X, Wang Y: Cretaceous age for the feathered dinosaurs of Liaoning, China. *Nature* 1999, 400:58-61.
- Doyle JA, Donoghue MJ: Phylogenies and angiosperm diversification. *Paleobiology* 1993, 19:141-167.
- Sanderson MJ, Donoghue MJ: Shifts in diversification rate with the origin of angiosperms. *Science* 1994, 264:1590-1593.

### Supplementary material

### S1

## Multigene analyses identify the three earliest lineages of extant flowering plants

Christopher L. Parkinson, Keith L. Adams, and Jeffrey D. Palmer Current Biology 6 December 1999, 9:1485–1488

### Supplementary materials and methods

Sequence generation, alignment, and phylogenetic analyses Total DNA was isolated as described in [S1]. Whenever possible, sequences from the same species were used; otherwise, generic placeholders were substituted, as indicated in Tables S1 and S2. Newly generated sequences were obtained from PCR products, either cloned (TOPO TA cloning kit, Invitrogen) or uncloned, using primers and conditions as described in [S2,S3] for four of the genes. For *rps2*, the following primers were used for amplification: rps2.F2, 5'AAGA-CACTRATTIGTITACGAA-3'; and either of the following reverse primers, rps2.R3, 5'-AYGGGATAAGTKATTMKTTTAT-3', or rps2.R4, 5'-TCMAGAATSMCTGTTTTSRT-3'. PCR was performed using 20 ng total cellular DNA, 0.8 mM MgCl<sub>2</sub>, 1 mM of each dNTP, 2  $\mu$ M of each primer, and Taq polymerase. Reaction conditions were 94°C for 10 sec, 50°C for 20 sec, and 72°C for 1 min, for 35 cycles in an Idaho Air thermal cycler.

Individual gene alignments were generated as in [S2], with removal before analyses of all known and potential RNA editing sites, regions of problematical alignment, and the co-conversion tract downstream of the intron found in some *cox1* genes [S4]. The final combined alignment consisted of 51 taxa with 6564 nucleotides (mtSSU, 1794; nuSSU, 1678; *rbcL*, 1351; *cox1*, 1359; and *rps2*, 410). Alignments for all five genes used in the phylogenetic analyses are available from the authors.

Maximum parsimony analyses were conducted using PAUP\* [S5] and used heuristic searches with random taxon addition (100 replicates), MULPARS on, and TBR branch-swapping. The combined analyses branch swapped to completion without removal of any taxa. Bootstrap support was assessed using heuristic searches with 1000 replications. All characters were weighted equally.

Maximum likelihood analyses were conducted using fastDNAml version 1.06 [S6]. We used the F84 model of Felsenstein [S7], with the initial transition/transversion (ti/tv) ratio estimated using PUZZLE (version 4.02) under the Tamura-Nei model of evolution with parameter estimation set to 'approximate' [S8]. Ten initial maximum-likelihood trees were inferred by randomizing 'input' order with jumble, and using 'global' swapping across all nodes (equivalent to subtree-pruning-regrafting). The optimal tree (best log-likelihood score) was then input into PAUP\* [S5] to reoptimize the ti/tv ratio using a model which incorporates variability in rates of change. We used the F84 evolutionary model assuming a discrete gamma distribution with four categories of site-to-site rate variability. The resulting ti/tv ratio was used to infer a new tree as above, further optimizing branch lengths. This tree and the optimized ti/tv ratio were then used to estimate evolutionary rates of change for each sequence position by partitioning the sites into 35 'rate' categories using the program DNArates (S. Pract, R. Overbeek and G. Olsen, personal communication). A new maximum-likelihood tree, incorporating the rate categories and the re-optimized ti/tv ratio, was then inferred. This new optimal tree was then used for a second round of rates estimation and tree inference. This process was iterated until a stable topology was achieved.

For maximum-likelihood bootstrapping, the SEQBOOT program of PHYLIP [S7] was used to generate 100 pseudoreplicate data sets. These were then analyzed using fastDNAml version 1.06, with the resulting bootstrap numbers generated using CONSENSE (PHYLIP). Relative likelihood support scores were calculated using TREECONS [S9] after generating the 1000 best maximum-likelihood trees using the RESTART (from the best tree) and KEEP options in fastDNAml version 1.1. Decay analysis was performed using AUTODECAY [S10].

### Analysis of single gene data sets

Only the rbcL and nuSSU rDNA data sets could be analyzed to completion – that is, branch swapping occurred to completion (using TBR) in both a heuristic search and in bootstrap analyses - in single-gene maximum-parsimony analyses that included all taxa. Individual analyses of mtSSU rRNA, cox1, and rps2 were performed using maximum-parsimony heuristic searches, with 10 random additions, NNI branch swapping, and simple addition for 100 replications. Eleven eudicots were excluded from the cox1 analysis and 14 angiosperms were excluded from the mtSSU analysis to enable completion of the analyses, while all eudicots were excluded from the rps2 analysis (rps2 appears to be missing from the mitochondrial genome of almost all eudicots and was probably transferred to the nucleus early in eudicot evolution: data not shown). The rbcL, cox1, and nuSSU analyses all gave a basal polychotomy of at least 10 clades in the 50% bootstrap consensus tree, the rps2 analysis resolved Amborella as the deepest angiosperm with 88% bootstrap support (but followed by a massive polychotomy), and the mtSSU analysis placed Amborella, Nymphaeales and Acorus as the deepest angiosperms with 66% bootstrap support (again followed by a massive polychotomy; the clearly anomalously deep placement of the monocot Acorus in this analysis almost certainly reflects the extraordinary divergence of the mtSSU rRNA gene in Acorus).

### Supplementary references

- S1. Qiu YL, Cho Y, Cox JC, Palmer JD: The gain of three mitochondrial introns identifies liverworts as the earliest land plants. *Nature* 1998, **394**:671-674.
- S2. Chaw S-M, Parkinson CL, Cheng Y, Vincent TM, Palmer JD: Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. *Proc Natl Acad Sci USA* 1999, in press.
- S3. Bowe LM, Coat G, dePamphilis CW: Phylogeny of seed plants based on all three plant genomic compartments: Extant gymnosperms are monophyletic and Gnetales are derived conifers. Proc Natl Acad Sci USA 1999, in press.
- S4. Cho Y, Qiu YL, Kuhlman P, Palmer JD: Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 1998, 95:14244-14249.
- S5. Swofford DL: PAUP\*. Phylogenetic Analysis Using Parsimony (\*and Other Methods), 4.0-B2 edition. Sunderland, Massachussetts: Sinauer: 1999.
- S6. Olsen GJ, Matsuda H, Hagstrom R, Overbeek R: fastDNAmI: A tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. *Comput Appl Biosci* 1994, 10:41-48.
- S7. Felsenstein J: *PHYLIP: Phylogeny Inference Package.*, 3.5c edition.
   Seattle, Washington: University of Washington; 1993.
- S8. Strimmer K, von Haeseler A: Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. *Mol Biol Evol* 1996, 13:964-969.
- S9. Jermiin LS, Olsen GJ, Mengersen KL, Easteal S: Majority-rule consensus of phylogenetic trees obtained by maximumlikelihood analysis. *Mol Biol Evol* 1997, 14:1296-1302.
- Eriksson T: Autodecay (Hypercard Stack Program), 4.0 edition. Stockholm: Botaniska Institutionen, Stockholm University, 1998.

### Table S1

Species used, DNA voucher information and GenBank accession numbers for each taxon for the three mitochondrial genes used in the analyses.

|          | Species name                                            | DNA number                 | mtSSU rRNA              | cox1                 | rps2                   |
|----------|---------------------------------------------------------|----------------------------|-------------------------|----------------------|------------------------|
| 1        | Ginkgo biloba                                           | gb*/gb*/Qiu94015           | AB029355                | AF020565             | AF193904               |
| 2        | Cycas revoluta/C.r./C.r.                                | Qiu94051/gb*/Qiu94051      | AB029356                | AF020562             | AF193905               |
| 3        | Zamia floridana/Z. bracteata/Z.f.                       | gb*/gb*/Qiu95035           | AB029357                | AF020583             | AF193906               |
| 4        | Abies homolepis/A. macrophyllus/<br>Pinus sp.           | Qiu96224/Qiu96224/Qiu94013 | AB029360                | AF020556             | AF193907               |
| 5        | Podocarpus costalis/P. macrophyllus                     | gb*/gb*/Qiu96148           | AB029369                | AF020575             | no data                |
| 6        | Juniperus chinensis/J. virginianal                      | gb*/gb*/                   | AB029368                | AF020567             | no data                |
| 7        | Zea mays                                                | gb*/gb*/                   | X00794                  | X02660               | AF202318               |
| 8        | Triticum aestivum                                       | gb*                        | K01229                  | Y00417               | Y13920                 |
| 9        | Iris sp./I.s./Trillium sp.                              | Qiu95091/Qiu95091/Qiu95016 | AF161087                | unpub                | AF193909               |
| 10       | Xanthosoma mafatta/X.m./<br>Philodendron oxycardium     | Qiu95063/Qiu95063/Qiu94065 | AF193974                | AJ223807             | AF193910               |
| 11       | Spathiphyllum clevelandii                               | Qiu94140                   | AF193975                | AJ007554             | AF193911               |
| 12       | Acorus calamus                                          | Qiu94052                   | AF193976                | AF193944             | AF195652               |
| 13       | Ceratophyllum demersum                                  | Qiu95003                   | AF193977                | AF193945             | AF193912               |
| 14       | Asarum canadense                                        | Qiu96018/ /Qiu96018        | AF193978                | unpub⁺               | AF193913               |
| 15       | Nymphaea sp.                                            | gb*/gb*/Qui91029           | AF161091                | AF020570             | AF193914               |
| 16       | Victoria sp.                                            | palmer788                  | AF193979                | AF193946             | AF193915               |
| 1/       | Euryale sp.                                             | palmer/90                  | AF193980                | AF193947             | AF193916               |
| 18       | Nupnar sp.                                              | palmer689                  | AF193981                | AF193948             | AF193917               |
| 19       | Cabomba sp.                                             | palmer688                  | AF 193982               | AF 193949            | AF 193918              |
| 20       | Nelumbo nucliera                                        |                            | AF 193983               | AF 193950            | AF 193919              |
| 21       | Schisanura spenaninera<br>Kadaura iapapiaa              | Qiu94165                   | AF 193984               | AF 19395 1           | AF 193920              |
| 22       | Rausula japonica<br>Drimus winteri                      | QIU94159                   | AF 193985               | AF 193952            | AF 193921              |
| 23       | Dillings Willen<br>Doporomia fostorii/ /D. argyroia     |                            | AF 197 102<br>AE 102006 | unpub <sup>t</sup>   | AF 193922<br>AE 102022 |
| 24       | Piper betle/ /P pigrum                                  | Oiu91048/ /Oiu97028        | AF161088                | unpub <sup>†</sup>   | AF10202/               |
| 25       | Amborella trichonoda                                    | Oiu97123                   | ΔF103087                | ΔΕ103053             | ΔF103025               |
| 20       | Austrobaileva scandens                                  | Oiu90030                   | AF193988                | AF193954             | AF193926               |
| 28       | Calvcanthus floridus                                    | Oiu94155                   | ΔF193989                | ΔΕ193955             | ΔF193927               |
| 29       | l aurus nobilis                                         | Oiu94209                   | AF193990                | AF193956             | AF193928               |
| 30       | Polvalthia suberosa                                     | Oiu94008                   | AF193991                | AF193957             | AF193929               |
| 31       | Sarcandra grandifolia                                   | Oiu92002                   | AF193992                | AF193958             | AF193930               |
| 32       | Magnolia grandiflora                                    | gb*/gb*/palmer612          | AF161089                | AF020568             | AF193931               |
| 33       | Liriodendron tulipifera                                 | Qiu94126                   | AF193993                | AF193959             | AF193932               |
| 34       | Clematis sp.                                            | Qiu95085                   | AF193994                | AF193960             | AF193933               |
| 35       | Ranunculus sp.                                          | gb*/ /Qui95024             | AF161093                | unpub†               | AF193934               |
| 36       | Grevillea robusta                                       | Qiu94087                   | AF193995                | AF193961             | AF193935               |
| 37       | Buxus sp.                                               | Qiu94069                   | AF193996                | AF193962             | T§                     |
| 38       | Platanus occidentalis                                   | gb*/ /Qiu94152             | AF161090                | unpub†               | AF193936               |
| 39       | Euptelea polyandra                                      | Qiu95098                   | AF193997                | AF193963             | T§                     |
| 40       | Tetracentron sinense                                    | Qiu94166                   | AF193998                | AF193964             | T§                     |
| 41       | Trochodendron araliodes                                 | gb*                        | AF161092                | AF020581             | T§                     |
| 42       | Nicotiana tabacum                                       | gb/Qiu94122                | AF161095                | unpub†               | T§                     |
| 43       | Glycine max                                             | gb*                        | M16859                  | M16884               | 19                     |
| 44       | Oenothera berteriana                                    | gb*                        | X61277                  | X05465               | 19                     |
| 45       | Beta vulgaris                                           | gb*                        | AF161094                | M57645               | 19                     |
| 46       | Digitalis teruginca/purpurea                            |                            |                         | AJ223415             | те  <br>е              |
| 47       | Alauluupsis Illallalla<br>Sombuous considensis          | yp<br>Oiwo4000             | 100002                  | 100502               | 1 <sup>3</sup><br>тв   |
| 40<br>40 | Sampucus canadensis                                     | QIU74098                   | AF 194000               | AF 193905            | 13<br>T8               |
| 47<br>50 | CrussUSUIIId DigelUVII<br>Hynsoocharis nimninallifalium | painter 1103               | AF194001<br>AF10/000    | AF193900<br>AF102047 | 13<br>T§               |
| 51       | Geranium himalayense                                    | CLP1                       | AF194002                | AF193968             | T§                     |

Where placeholder taxa were used, the species name and DNA voucher information are separated by a slash (/): the order listed follows the gene order. \*Sequence from GenBank. †Unpublished

sequence of C. dePamphilis. <sup>‡</sup>Unpublished sequence of Y. Cho. <sup>§</sup>*rps2* is thought to have been transferred to the nucleus (see Supplementary materials and methods).

### Table S2

| Species used, DNA vouche | er information and GenBank | accession numbers for ea | ch taxon for the chloroplast rbc | L and nuSSU |
|--------------------------|----------------------------|--------------------------|----------------------------------|-------------|
| rDNA.                    |                            |                          |                                  |             |

|          | Species name                                            | DNA number                          | rbcL                  | nuSSU rRNA |
|----------|---------------------------------------------------------|-------------------------------------|-----------------------|------------|
| 1        | Ginkgo biloba                                           | gb*                                 | D10733                | D16448     |
| 2        | Cycas circinalis/C. taitungensis                        | gb*                                 | L12674                | D85297     |
| 3        | Zamia floridana/Z. pumila                               | gb*                                 | X58391                | M20017     |
| 4        | Abies homolepis/A. lasiocarpa                           | gb*                                 | X58131                | X79497     |
| 5        | Podocarpus costalis                                     | gb*                                 | L12537                | D38473     |
| 6        | Juniperis chinesis/Callitris rhomboidea                 | gb*                                 | 289851                | D38443     |
| 7        | Zea mays                                                | gb*                                 | X86563                | K02202     |
| 8        | Triticum aestivum/Oryza sativa                          | gb*                                 | 344052                | AF069218   |
| 9        | Iris germanica/Gladiolus buckerveldii                   | gb*                                 | L05307                | L54602     |
| 10       | Xanthosoma mafatta/Gymnostachys anceps                  | gb*                                 | 349165                | AF069200   |
| 11       | Spathiphyllum clevelandii                               | qb*/                                | 4138464               | unpubt     |
| 12       | Acorus calamus                                          | ab*                                 | 336205                | L24078     |
| 13       | Ceratophyllum demersum                                  | dp*                                 | 1817557               | D85300     |
| 14       | Asarum canadense/A, havatanum                           | ab*                                 | 348025                | D29774     |
| 15       | Nymphaea odorata/A, tuberosa                            | ap.                                 | M77034                | 124404     |
| 16       | Victoria cruziana                                       | ap.                                 | 343646                | AF096698   |
| 17       | Furvale ferox                                           | ap.                                 | 336945                | AF096694   |
| 18       | Nuphar variegata                                        | ap.                                 | 342742                | AF096695   |
| 19       | Cabomba caroliniana/C, sp. (Zanis 1998)                 | ap.                                 | 336459                | AF096691   |
| 20       | Nelumbo nucifera                                        | gb<br>ab*                           | 342683                | 175835     |
| 20       | Schisandra spenanthera                                  | gb<br>ab*                           | 29/862                | 75842      |
| 21       | Kadsura janonica                                        | 0iu 9/159                           | ΔΕ102060              | ΔΕ102037   |
| 22       | Nimvs winteri                                           | ab*                                 | 290206                | 11/2823    |
| 20       | Danaramia sn /D. sarnans                                | gb<br>ab*                           | 270200                | 124/11     |
| 24       | Piper batle/D kadsura                                   | gb<br>ab*                           | 112660                | D20778     |
| 26       | Amborella trichonoda                                    | gb<br>ab*                           | 289057                | 11/2/197   |
| 20       | Austrobaileva scandens                                  | gb<br>ab*                           | 207037                | U42503     |
| 27       | Calveanthus floridus                                    | gb<br>ab*                           | 209219                | 1120210    |
| 20       | Calycaninus noniuus<br>Laurus pobilis/Sassafras albidum | Giu 04200/ab*                       | AE102070              | U52021     |
| 27       | Dalvalthia suborosa                                     |                                     | AF102071              | AE102020   |
| 3U<br>21 | Pulyalilila Superusa<br>Saraandra grandifalia           | Qiu 94006                           | AF 19297 1<br>204942  | AF 192930  |
| 22       | Magnolia macronbylla/M. acuminata                       | gb<br>ab*                           | 294042                |            |
| ວ∠<br>ວວ | Liriadandran tulinifara                                 | gb<br>ab*                           | Colophora 1000        |            |
| 33<br>24 | Clamatia an Wantharhiza cimplicicaima                   | yu<br>Oliy OFOOF/ah*                |                       |            |
| 34<br>25 | Ciemaiis sp./Xaninoiniza simplicissima                  | QIU 95085/9D                        | AF 192972             | L/3839     |
| 30<br>24 | Crevilles repuete                                       |                                     | LU0/00                | D29760     |
| 30       | Grevillea robusta                                       | QIU 94087                           | AF 192973             | AF 192939  |
| 3/<br>20 | Buxus sempervirens                                      | yp<br>ab*                           | AFU93717              | L34005     |
| 30       |                                                         | yp<br>~b*                           | LU1943                | 042794     |
| 39       | Eupleiea polyandra                                      | gp<br>~b*                           | 290666                | L/5831     |
| 40       | Techodon sinense                                        | gp<br>~b*                           | 295282                | 042814     |
| 41       | Niestiere telesere (Demosfelsie esselfere               | ag<br>als*                          | LU1958                | 042816     |
| 42       | Nicotiana tabacum/Brunsfelsia pauciflora                | gb^                                 | 200044                | L49274     |
| 43       | Giycine max                                             | gp                                  | 295552                | XU2623     |
| 44       | Oenothera/Clarkia xantiana                              | gp                                  | vverman <i>et al.</i> | 06/930     |
| 45       | Aurprex patula/Beta vulgaris                            | gp"<br>mh*/Ok - 1                   | X 15925               | AF 161095  |
| 46       | Digitalis purpurea/D. teruginca                         | gb <sup>-</sup> /Cho <sup>-</sup> l | 1490237               | AF192940   |
| 4/       | Arabidopsis thalina                                     |                                     | unpub <sup>+</sup>    | X16077     |
| 48       | Sambucus racemosa/S. canadensis                         | gb*/Qiu94098                        | 294834                | AF192941   |
| 49       | Crossosoma sp./C. bigelovii                             | /paimer1103                         | unpub∔                | AF192942   |
| 50       | Hypseocharis sp./sp.                                    | 101.51                              | unpub∓                |            |
| 51       | Geranium himalayense                                    | /CLP1                               | unpub⁺                | AF192943   |

Where placeholder taxa were used, the species name and DNA voucher information are separated by a slash (/): the order listed follows the gene order. \*Sequences are from GenBank. <sup>†</sup>Unpublished sequence of D. Soltis, P. Soltis and/or M. Zanis. <sup>‡</sup>Unpublished sequence of B. Price.