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RESEARCH ARTICLE Open Access

Phylogenetic relationships among Staphylococcus
species and refinement of cluster groups based
on multilocus data
Ryan P Lamers1,5, Gowrishankar Muthukrishnan1, Todd A Castoe2, Sergio Tafur3, Alexander M Cole1* and
Christopher L Parkinson4*

Abstract

Background: Estimates of relationships among Staphylococcus species have been hampered by poor and
inconsistent resolution of phylogenies based largely on single gene analyses incorporating only a limited taxon
sample. As such, the evolutionary relationships and hierarchical classification schemes among species have not
been confidently established. Here, we address these points through analyses of DNA sequence data from multiple
loci (16S rRNA gene, dnaJ, rpoB, and tuf gene fragments) using multiple Bayesian and maximum likelihood
phylogenetic approaches that incorporate nearly all recognized Staphylococcus taxa.

Results: We estimated the phylogeny of fifty-seven Staphylococcus taxa using partitioned-model Bayesian and
maximum likelihood analysis, as well as Bayesian gene-tree species-tree methods. Regardless of methodology, we
found broad agreement among methods that the current cluster groups require revision, although there was some
disagreement among methods in resolution of higher order relationships. Based on our phylogenetic estimates, we
propose a refined classification for Staphylococcus with species being classified into 15 cluster groups (based on
molecular data) that adhere to six species groups (based on phenotypic properties).

Conclusions: Our findings are in general agreement with gene tree-based reports of the staphylococcal phylogeny,
although we identify multiple previously unreported relationships among species. Our results support the general
importance of such multilocus assessments as a standard in microbial studies to more robustly infer relationships
among recognized and newly discovered lineages.

Background
The genus Staphylococcus currently contains more than 60
species and subspecies. Many are of clinical, agricultural,
and economic interest because they lead to high levels of
infection among human populations or agricultural loss
within the dairy, swine, and poultry industries. Moreover,
multiple species within this genus are common pathogens
in non-human animals and thus should be monitored with
concern as these animals provide reservoirs for pathogenic
bacteria [1-3]. Although seemingly uncommon, host
switching is an important mechanism in the evolution of
Staphylococcus. For example, in S. aureus, human-to-

poultry [4] and bovine-to-human [3] host switches have
been observed. As such, a thorough understanding of spe-
cies relatedness is a necessity for understanding host-
pathogen interactions within this genus [5-7].
Many previous estimates of the staphylococcal phyl-

ogeny have been based on single locus gene trees, which
in many cases exhibit differing topologies. As such, robust
species tree estimations have proved to be difficult. Histor-
ically, staphylococcal species identification has been a la-
borious task, requiring multiple biochemical and
genotypic methodologies [6,8]. Fortunately, more efficient
and reliable assays based on PCR and DNA sequencing
have become commonplace as part of the identification
process of novel species (and differentiating closely related
species). As with most bacterial systems, the 16S rRNA
gene continues to be the most common method for
staphylococcal species identification, although its utility is
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limited due to high sequence similarity among different
staphylococcal species [9,10]. For this reason, increased
emphasis has recently been devoted towards identifying
additional genes for use in species identification that offer
greater taxonomic resolution between closely related spe-
cies, while also limiting the incidence of misidentification.
Such genes as rpoB (β-subunit of RNA polymerase), tuf
(elongation factor Tu), and dnaJ (heat shock protein 40),
have been found useful for the identification of staphylo-
coccal species. With the exception of one study where
dnaJ and rpoB were concatenated and assessed under a
single evolutionary model [11], each has only been ana-
lyzed singularly in a phylogenetic context.
We targeted two related primary goals in this study.

First, we aimed to utilize a multilocus phylogenetic dataset
to critically evaluate the proposed cluster groupings of
species of Staphylococcus, and to amend these groupings
to reflect estimates of phylogeny. Second, on a broader
scale, we aimed to infer the deeper phylogenetic relation-
ships among cluster groups of all Staphylococcus species
using multilocus data analyzed under different strategies
including concatenated and species-tree methods. We
analyzed a large multilocus Staphylococcus dataset in mul-
tiple ways to thoroughly explore the phylogenetic signal in
the data, and provide robust confirmatory evidence for the
relationships among species. We first analyzed the com-
bined four-gene dataset using partitioned Bayesian and
maximum likelihood analyses, in which a single species
tree was inferred. Such probabilistic methods of phylogeny
are particularly powerful as they incorporate alternative
models of character evolution into the analysis and search
for a tree that ultimately maximizes the probability of data
given the tree [12,13]. Their accuracy, however, can be
dependent on the complexity and biological realism of
the models of sequence evolution used.
There is a tradeoff between having enough parameters

to accurately capture the complexity of sequence evolu-
tion in a multilocus dataset, while not having more para-
meters than can be accurately estimated from the data
[14-17]. We therefore tested multiple differently parti-
tioned model schemes to identify which best fit the mul-
tilocus dataset. Generally, we expect such partitioned
model analysis of the combined (concatenated) dataset
will have the best power for inferring the phylogeny of
Staphylococcus, as long as basic assumptions of the ap-
proach are met. The most important of these assump-
tions is that all the underlying gene trees are the same as
the species tree. There are, however, situations where
gene trees and species tree are not the same [18,19], or
where systematic error in gene-tree estimation may lead
to overconfidence in an incorrect species tree [20].
There is some indication, however, that in such cases,
maximum likelihood bootstrap support values may be
more sensitive to conflicting phylogenetic signals in the

data than Bayesian posterior probability support for nodes,
although both concatenated data analysis approaches are
likely to experience some error [21-23].
Therefore, we also used an alternative approach to es-

timate relationships among species of Staphylococcus in
which gene trees are estimated separately, and jointly
considered to estimate an underlying species tree. This
approach, called Bayesian Estimation of Species Trees
analysis [24], thereby avoids concatenation of multiple
loci, and estimates a species tree based on a model that
accounts for deep coalescence of gene trees. Although
this approach does not specifically model all possible
scenarios that may violate the assumptions of the conca-
tenated analysis, comparisons of results between this ap-
proach and concatenated analyses provides added
perspective on the relative robustness of species-level
phylogenetic inferences.

Methods
DNA sequence acquisition and alignment
DNA sequences for a total of four genes from 57
staphylococcal species, and two outgroup species
(Macrococcus caseolyticus - strain JCSJ5402, and Bacillus
subtilis - strain 168) were downloaded from NCBI's
GenBank. For each species included in the analysis,
sequences were specifically downloaded from the type
strain. The four loci collected included the non-coding
16S rRNA gene, and the three protein coding genes:
dnaJ, rpoB, and tuf. The list of all species analyzed in
this study with the accession numbers for each of the four
gene fragments is given in Additional file 1: Table S1.
Nucleotide sequences were aligned using ClustalW in

MEGA 4.1 [25], with manual adjustment to ensure that
complete codons remained in tact for downstream ana-
lyses. Regions of high variability were omitted from the
alignments because assessment of homology was ques-
tionable [15]. This was only observed to be the case for
dnaJ in which nucleotide positions 63–93 in the original
sequence was omitted. Additional manual codon adjust-
ment of this region did not improve the alignment and
thus, was omitted. Secondary structure predictions (i.e.
stem and loop regions) for 16S rRNA gene fragments
were estimated using the RNAalifold approach [26,27].
The data matrix and trees have been deposited in Tree-
Base ([28]; http://purl.org/phylo/treebase/phylows/study/
TB2:S12505). Analyses of incongruence length differ-
ences (ILD; [29]) among partitions of the dataset were
performed using PAUP* 4.0 [30]. Nucleotide diversities
and species divergence calculations were performed
using MEGA 4.1 [25] and DnaSP v5 [31].

Nucleotide model selection
Models of nucleotide evolution for each gene and
nominal partition of the data were estimated using
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jModelTest v0.1.1 [32,33] based on Akaike Information
Criterion (AIC). For the purpose of model testing (and
later partitioned Bayesian analyses) we divided the data-
set by gene, and into biologically relevant subsets: coding
versus non-coding gene fragments, codon position, and
stem versus loop secondary structures (for the 16S
rRNA gene fragment). These individual partitions, and
the best-fit evolutionary model selected for each parti-
tion, are shown in Additional file 2: Table S2.
For analyses of the combined data with partitioned

models, we formulated nine different partitioning
schemes. These were designed to provide a hierarchical
spectrum of model complexity, and parameter richness,
with increasing partitioning of biologically reasonable
sets of the data (Table 1). The simplest model (MB1)
was a single evolutionary model (GTR+ ΓI) fit to the en-
tire dataset followed by additional models (MB2-MB9)
that were created by the addition of dataset partitions
among and within non-coding and coding gene frag-
ments (Table 1).

Bayesian phylogenetic analysis
Bayesian inference (BI) was carried out using the
Metropolis-Hastings coupled Markov chain Monte
Carlo method in MrBayes v3.1.2 [34,35] and BEST
v2.3.1 [36]. All Bayesian phylogenetic analyses per-
formed in this study were carried out using the
STOKES IBM High Performance Computing Cluster at
the University of Central Florida. MPI-enabled versions
of MrBayes v3.1.2 and BEST v2.3.1 were compiled and
run in parallel [37]. For each BI run, gaps in alignments
were treated as missing data. For each MrBayes ana-
lysis, two independent BI runs were carried out using
random starting trees with one cold chain and three

heated chains (following program defaults). Each model
was assessed in triplicate with summary statistics being
estimated from all runs.
In addition to performing BI runs in MrBayes on the

unpartitioned multilocus dataset (using the evolutionary
model specified by AIC), eight additional models were
assessed where independent models of evolution were
applied to different nucleotide regions within the com-
bined dataset (refer to nucleotide model selection sec-
tion). This was achieved by using the “unlink” command
in MrBayes v3.1.2. Each BI run consisted of 4 million
generations with every 100 steps being sampled. As veri-
fied using Tracer v1.5 [38], stationarity was reached in
all BI runs prior to 500 000 generations and a conserva-
tive burn-in of 1 million (25%) generations was per-
formed. To verify that additional sampling (i.e.,
increasing the number of generations) for MrBayes runs
would not affect the outcome of the data, a final run of
20 million generations with sampling every 1 000 steps
and a burn-in of 4 million generations was performed.
In addition to reconstructing phylogenies using

MrBayes v3.1.2, Bayesian phylogenetic reconstruction
was also performed using BEST v2.3.1, which is a modi-
fied version of MrBayes. BEST was implemented by set-
ting the prior for BEST= 1, and unlinking topologies,
branch lengths, and mutation rates across loci. For each
independent BEST analysis, four simultaneous runs con-
sisting of 16 chains each were performed for 20 million
generations with sampling every 1 000 generations. A
prior for theta was set at 0.04, based on the mean esti-
mates of theta for the dataset calculated in DnaSP and
MEGA 4.1. Consistent with previous reports [39,40], run
convergence was only achieved by setting a uniform
prior for branch lengths (prset brlenspr = clock:uniform).

Table 1 Description of alternative model partitioning strategies tested for fit to the combined nucleotide data

Model
name

# of partitions # of free model
parameters

Description of model partitions

MB1 1 10 Single model for concatenated dataset

MB2 2 13 16S; All protein coding gene fragments (dnaJ; rpoB; tuf)

MB3 4 29 Independent partition for each gene fragment (16S; dnaJ; rpoB; tuf)

MB4 7 48 16S; two partitions for each gene fragment (codon positions
1 and 2; codon position 3)

MB5 8 62 16S, stems; 16S, loops; two partitions for each gene fragment
(codon positions 1 and 2; codon position 3)

MB6 10 78 16S; three partitions for each gene fragment (codon positions
1, 2, and 3, separately)

MB7 11 92 16S, stems; 16S, loops; three partitions for each gene fragment
(codon positions 1, 2 and 3, separately)

MB8 3 26 16S, stems; 16S, loops; All protein coding gene fragments (dnaJ; rpoB; tuf)

MB9 5 43 16S, stems; 16S, loops; Independent partition for each protein coding
gene fragment (dnaJ; rpoB; tuf)
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As with all BI runs, nucleotide regions were assigned nu-
cleotide substitution models based on AIC, estimated in
jModelTest.

Assessment of BI runs
All partitioning strategies employed using MrBayes were
run in triplicate to verify reproducibility while BEST ana-
lyses were run two separate times. Subsequently, MrBayes
and BEST runs, under each model, were assessed using
multiple criteria to determine the success of each model
and the overall best-fit model. Bayes factors (BF; 2ΔlnB10)
were calculated from estimates of the harmonic mean of
the posterior distribution of cold chain likelihoods. Con-
sistent with previous reports [14,16,41], we set a cutoff of
BF> 10 to support one model over another. Recently, mul-
tiple studies have suggested that biases introduced by
using the harmonic mean estimator may practically affect
model selection using BF [42-45]. Based on our results
however, we discuss why such biases are practically toler-
able in this study (i.e., model choice has little effect on
topology and nodal support).
Akaike weights (Aw) [46] were also used to identify

best-fit partitioned models [17]. Initially AIC values were
calculated by the equation AIC =−2lnL + 2 k where k
equals the total number of free parameters within the
model. For small samples sets, where the sample size (n)
to free parameter (k) ratio is <40, it has been suggested
that a small-sample bias adjustment be applied to the
AIC calculation, thus calculating AICc instead [47,48].
The sample size of the staphylococcal dataset (with out-
groups) is 59 and the minimum number of free para-
meters was 10 for model MB1. As such, the n/k ratio
was always <40, so we calculated the AICc instead.
The equation for AICc¼ �2lnLþ 2kþ 2k k þ 1ð Þ=
n� k� 1. The ΔAICc was then calculated by subtract-
ing the model with the minimum AICc (AICcmin) (i.e.
highest lnL) from the ith model using the equation
ΔAICci¼ AICci � AICcmin . Following calculations of the
ΔAICc for each model, Aw were calculated using the

equation Aw ¼ e �ΔAICci=2ð Þ=
P

e �ΔAICci=2ð Þ . By this equa-
tion, the relative likelihood of a model given the data is
normalized over all models and thus, the greater the Aw
for a given model, the greater the relative support for
that model [14].
Further assessment of model performance was based

on examining the output of model parameters and car-
ried out by analyses of multiple additional features. Pos-
terior distributions of parameters and analysis of trace
plots were assessed for failed convergence and stationar-
ity using Tracer v1.5 [38]. Also, because model overpara-
meterization has been linked to estimates of tree length
in partitioned Bayesian analyses [49], we also compared
tree length estimates among runs.

Maximum likelihood analysis
Phylogenetic reconstruction using maximum likelihood
(ML) analysis was carried out using the program GARLI
v.2.0 [50], using default parameters except where speci-
fied. Phylogenetic estimates using ML were performed
using both the combined, unpartitioned dataset as well
as the combined dataset partitioned by locus (Additional
file 2: Table S2). Five ML search replicates were run for
each dataset using random starting trees, and up to five
million generations were employed for each run unless
the scoring topology lnL did not improve by ≥ 0.01 for
20 000 generations, in which case the run was termi-
nated prematurely and the next bootstrap replicate was
begun. Two hundred bootstrap replicates were con-
ducted for each run and consensus trees were generated
using the SumTrees v.3.0 software which is part of the
DendroPy v.3.7 phylogenetic computing library [51].
Likelihood ratio tests (LRTs) [13,52] were performed to
compare competing model partitioning schemes, M0
and M1. Statistical support for model M0 over M1 (or
vice versa) was assessed using the Chi-square distribu-
tion for q degrees of freedom (df ) where q equals the
difference in the number of free parameters between
model M0 and M1 (df = 19 in this study) [52].

Results
Gene fragments used for analyses contain differing
degrees of variability
Among the four gene fragments analyzed in this study, 3
521 nucleotides were included (1 481 from the 16S
rRNA gene fragment, 816 from dnaJ, 474 from rpoB,
and 750 from tuf ) for 59 different taxa. The dataset con-
tained 1 016 parsimony-informative sites and 2 142 con-
served sites. The nucleotide diversity of the 16S rRNA
gene fragment was 0.029 substitutions (subs.) per site,
while that for dnaJ, rpoB, and tuf was 0.241, 0.147, and
0.097 subs. per site, respectively. The average theta per
site for the combined dataset was 0.04. The lowest inter-
species divergence was between S. pseudintermedius and
S. delphini (0.014 subs. per site). The highest estimated
evolutionary divergence within the complete dataset was
between S. piscifermentans and the outgroup species, B.
subtilis (0.266 subs. per site), while the highest level
among staphylococcal taxa was between S. piscifermen-
tans and S. vitulinus (0.182 subs. per site).

Individual gene tree analyses
Phylogenetic analysis of individual genes revealed that
16S rRNA and dnaJ fragments resolved similar major
clades but different branching orders of these clades
(Additional file 3: Figure S1). Similarly, most relation-
ships and clusters of species within rpoB and tuf gene
trees were in general agreement with the 16S and dnaJ
gene trees, but multiple higher-level clades were present
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in these that were unique (Additional file 3: Figure S1).
Thus, individual gene tree analyses supported similar
clusters of species, but varying arrangements of these
clusters relative to one another. As expected, nodal sup-
port values for individual gene trees were relatively low,
particularly for nodes more deeply nested in the tree.
Formal partition homogeneity (or incongruence length
difference test [29]) tests indicated that there were sig-
nificant differences between all partitions except for 16S
rRNA gene and dnaJ. This test, however, is based on
parsimony criteria and known to have highly variant
type-1 and type-2 error rates depending on different tree
structures, rates across sites, and informative site con-
tents among datasets [53,54]. We therefore interpret
these results cautiously, as the potential for there to exist
some conflicting phylogenetic signal among genes, and
incorporate this caution in later interpretations of the
combined data analyses. Such conflicting signal might
result from multiple sources, including phylogenetic esti-
mation error leading to different inferences from indi-
vidual gene trees, and/or different underlying
evolutionary histories among genes due to lateral gene
transfer or lineage sorting effects.

Dataset partitioning improves likelihood estimates of
Bayesian phylogenetic analyses
Regardless of partitioning strategy employed, all Bayes-
ian inference (BI) runs yielded highly reproducible
phylogenetic inferences (Additional file 4: Figure S2).
Within MrBayes BI runs, log-likelihood (lnL) estimates
rapidly reached stationarity and convergence. Log-
likelihoods ranged from −38830.66 (MB1) to −37421.36
(MB7) with intermediate lnL generally increasing with
partition complexity (Figure 1). Dataset partitioning for
concatenated BI runs (i.e., MrBayes) ranged from the

most simple (unpartitioned) to highly complex (11 parti-
tions; Table 1). Initial assessments of Bayes factors (BF;
2ΔlnB10) were used to compare topological likelihoods
across each different model. As shown in Table 2, a large
disparity between the lnL from various partitioning strat-
egies was observed. Partitioning strategy MB7 yielded
the highest lnL (Figure 1) with a BF > 230 that of the
next best model (MB5) and >2800 compared to the
unpartitioned model (MB1). Model MB7 was the most
complex strategy (11 different partitions) with a separate
model for each codon position of each protein-coding
gene, as well as stem versus loop regions of the 16S
rRNA gene fragment (Table 1). The model with the sec-
ond highest likelihood was MB5 whereby the 16S rRNA
gene fragment was again partitioned by stem and loop
position, however, only two independent partitions were
applied to each individual protein coding gene fragment
(codon positions 1 & 2; and codon position 3). Using
AICc for the Aw calculation identified model MB5 as
the best-fit model (Aw= 1.000; Table 2). Thus, based on
lnL-centric criteria, models MB5 and MB7 are the pre-
ferred models for the concatenated data analysis.
Inspection of TL identified that the more highly parti-

tioned models (MB4-MB7) yielded TLs between two
and four times longer than less partitioned models
(MB1-3; MB8-9; refer to Additional file 5: Figures S3
and Additional file 6: Figure S4). The more highly-
partitioned model runs with high TLs also tended to
show very high TL variance among generations, resulting
in quite broad TL posteriors (Additional file 5: Figures
S3 and Additional file 6: Figure S4). Considering this evi-
dence for unreliability in the more highly partitioned
model runs, we tempered our choice of partitioning
scheme. A combination of lnL (BF and Aw) and TL reli-
ability criteria suggest that MB8 is the preferred parti-
tioned model, since it had better lnL than other models
(e.g., MB1-2) while resulting TL estimates were appar-
ently uninflated and of low variance (Additional file 5:
Figures S3 and Additional file 6: Figure S4). Hereafter,
we discuss results based on the BI runs from model
MB8, and identify any notable differences between this
model and others (particularly MB5 and MB7). It is im-
portant to note however that while lnL and TLs differed
between partitioning scheme models, tree topologies
remained nearly identical (discussed below). It is pos-
sible that the inconsistency between the BF-based sup-
port for more highly partitioned models versus evidence
for model overparameterization that we observed may
be related to calculation of BFs based on harmonic mean
approximations of marginal likelihoods, which has been
shown previously [42,43,45]. Thus, while no substantial
topology or support value differences were observed be-
tween results from different models, we have taken a
conservative approach and chosen to use MB8 as the

Figure 1 Dataset partitioning improves model fit. Shown are
log-likelihood plots comparing partitioning strategies used for
concatenated BI runs. Error bars represent the mean± 95%
confidence interval.

Lamers et al. BMC Evolutionary Biology 2012, 12:171 Page 5 of 15
http://www.biomedcentral.com/1471-2148/12/171



preferred model because more complex models exhib-
ited excessive TL indicative of overparameterization.

Bayesian and maximum likelihood analyses of
concatenated data
Regardless of the model under which the concatenated
staphylococcal dataset was analyzed using BI, high over-
all nodal support was observed for nearly all nodes in
the tree. Tree topologies were highly concordant be-
tween different partitioned model schemes, with only a
single topological inconsistency between models. In
addition to the placement of S. devriesei shown in
Figure 2, this species was also estimated to form a clade
with S. lugdunensis under four models (MB2-4, and
MB6). Additionally, under models MB5 and MB7, S.
devriesei was estimated to diverge after S. lugdunensis,
forming the sister lineage to a clade containing S. hae-
molyticus and S. hominis (data not shown). Nodal sup-
port for these alternative relationships was quite low
(avg. Pp =~0.64), however, in comparison to the support
of S. devriesei forming a clade with S. haemolyticus (Pp =
0.85; Figure 2). Beside this single topological difference,
nodal support differed by very little among models
(Pp ≤ 0.02), with only two cases (MB1 and MB6) in
which a single node differed by a Pp = 0.05.
Bayesian concatenated phylogenetic estimates supported

strongly (Pp= 1.00) the separation of staphylococcal spe-
cies into two deeply-diverging major clades (Figure 2).
One of the two clades contained all of the oxidase posi-
tive staphylococcal species (frequently referred to as the
Sciuri group), with the second group containing all other
oxidase negative staphylococcal species (Figure 2). The
single lineage S. auricularis formed the sister group to all
other members of this second group, with the next most
basally-diverging lineage in this clade including the fol-
lowing species: S. simulans, S. condimenti, S. carnosus
(both subspecies), and S. piscifermentans (Pp = 1.00).

The subspecies of S. carnosus proved to cluster tightly
together, as expected, and formed the sister group to
S. condimenti.
The next major divergence within the staphylococcal

tree was that of a strongly supported clade (Pp = 1.00)
containing the pathogenic species S. saprophyticus (Fig-
ure 2). This clade contained many members of the poly-
phyletic group of coagulase negative, novobiocin
resistant species, and included the recently described
species S. massiliensis [55] and S. pettenkoferi [56]. Fol-
lowing this divergence, species of heightened clinical sig-
nificance diverged, including S. aureus, S. epidermidis, S.
warneri, S. haemolyticus and S. lugdunensis, which
formed a well-supported clade (Pp = 1.00) (Figure 2). We
also found that the most recently discovered Staphylo-
coccus species, S. agnetis [57] formed a strongly sup-
ported clade (Pp = 1.00) with S. hyicus, for which S.
chromogenes was the sister lineage.
The concatenated ML estimation of the staphylococcal

phylogeny was consistent with reconstructions from the
concatenated BI method (Figure 3). Log-likelihoods
under a single evolutionary model were −39186.39 while
partitioning the concatenated dataset by individual gene
yielded a lnL =−36632.34. The likelihood-ratio test sup-
ported the partitioned dataset as the best-fit model
(p < 0.0001; likelihood-ratio (−2ΔlnL) = 5 108; degrees of
freedom (df) = 19). Topologies estimated under both
models were identical except for a single discordant
node: S. devriesei formed a single-species sister taxon to
S. haemolyticus and S. hominis in the unpartitioned
dataset (bootstrap support (BS) = 59%), while in the data-
set partitioned by individual gene, S. devriesei shared a
clade with S. haemolyticus (BS = 72%). Aside from minor
discrepancies between the concatenated ML and BI top-
ologies (Figure 3), high topological agreement was
observed. Although weakly supported (BS < 50%), S. felis
diverged more deeply under ML than BI, forming a

Table 2 Bayes factors and Akaike weights reveal differences in model fitness for the different partitioning strategies
applied to the concatenated, multilocus dataset

M1# a2ΔlnB10 Akaike Weight

M0! MB1 MB2 MB3 MB4 MB5 MB6 MB7 MB8 MB9

MB1 — 412.11 700.90 2371.08 2584.86 2462.04 2818.59 603.91 891.39 0.000

MB2 −412.11 — 288.79 1958.97 2172.74 2049.93 2406.48 191.80 479.28 0.000

MB3 −700.90 −288.79 — 1670.18 1883.96 1761.14 2117.70 −96.99 190.49 0.000

MB4 −2371.08 −1958.97 −1670.18 — 213.77 90.96 447.51 −1767.17 −1479.69 0.000

MB5 −2584.86 −2172.74 −1883.96 −213.77 — −122.82 233.74 −1980.95 −1693.46 1.000

MB6 −2462.04 −2049.93 −1761.14 −90.96 122.82 — 356.56 −1858.13 −1570.65 0.000

MB7 −2818.59 −2406.48 −2117.70 −447.51 −233.74 −356.56 — −2214.68 −1927.20 0.000

MB8 −603.91 −191.80 96.99 1767.17 1980.95 1858.13 2214.68 — 287.48 0.000

MB9 −891.39 −479.28 −190.49 1479.69 1693.46 1570.65 1927.20 −287.48 — 0.000
aPositive Bayes factors (2ΔlnB10) support model M0 over model M1 and negative values support model M1 over model M0. Bayes factor support values >10 are
shown in bold.
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single species sister lineage to the larger clade containing
S. hyicus, S. intermedius, and S. schleiferi in the ML tree
(Figure 3). Among the oxidase containing species clade,
ML estimated a more basal divergence of S. lentus and
S. stepanovicii than was estimated under the concate-
nated BI approach (Figure 3). Comparisons between BI
and ML nodal support values indicated that support
values at discordant nodes between BI and ML methods
ranged from Pp= 0.75-0.98 for BI and BS = 30-98% for
ML (Figure 4). Thus, differences in the tree and support
values between methods included both weakly and
strongly supported nodes.

Concatenated and unconcatenated phylogenetic methods
broadly agree on clustering of staphylococcal species
Estimation of staphylococcal phylogeny was also per-
formed on the unconcatenated dataset using Bayesian
Estimation of Species Trees (BEST) analysis [36]. BEST
analyses treated each locus as an independent gene,
thereby inferring the likely species tree given four inde-
pendent gene trees. Trees inferred from duplicate BEST
runs were identical in topology with no nodes differing
by Pp > 0.05, indicating that multiple runs converged on
nearly the same posterior tree space. With three excep-
tions, the BEST tree resolved the same major clades as

Figure 2 Bayesian MCMC analysis of the concatenated dataset. Shown is a 50% majority rule phylogram from BI runs under the combined,
partitioned dataset in MrBayes. Numbers represent posterior probabilities with grey-filled circles representing a posterior probability of 1.00.
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the concatenated BI and ML trees, although in some
cases the relative branching order of major clades dif-
fered (Additional file 7: Figure S5). BEST estimated that
S. auricularis formed a clade with S. sciuri (Pp = 0.99) as
opposed to the later (less basal) divergence of S. auricu-
laris observed in concatenated BI and ML estimates
(Pp = 1.00 and BS = 100%, respectively; Additional file 7:
Figure S5). BEST also estimated a more divergent rela-
tionship between S. kloosii and S. arlettae, whereas these
two species formed an exclusive clade in concatenated
data analyses. The concatenated BI and ML analyses

estimated S. felis to diverge more basally than was in-
ferred by BEST analyses, although support for the place-
ment of S. felis was generally low among all methods
(BEST, Pp < 0.50; concatenated BI, Pp = 0.75; concate-
nated ML, BS < 50%).
In order to achieve convergence using BEST method,

we chose to enforce a molecular clock to reduce the
number of parameters in the analysis. To evaluate the
impact of this parametric restriction on the resulting
inferences, we also conducted BEST analyses without en-
forcing a molecular clock. Only minor differences in

Figure 3 Maximum likelihood phylogram of staphylococcal species. Shown is a ML phylogram obtained from the assessment of the
locus-partitioned dataset (similar to MB3) using GARLI v.2.0 [50]. The consensus phylogram was generated from 200 bootstrap replicates with five
ML search replicates per bootstrap. Nodes receiving Pp= 1.00 and/or BS = 100% are indicated by grey-filled circles; otherwise, MrBayes posterior
probability is shown in red text, and ML bootstrap support is shown in black text. Clades that were not present in MrBayes are indicated by
a red }.
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cluster groupings between analyses were observed where
S. agnetis and S. hyicus formed a clade with S. chromo-
genes as the sister taxon in Additional file 7: Figure S5,
while the alternate (non-clock BEST) analysis estimated
S. agnetis and S. chromogenes to form a clade, sister to S.
hyicus (data not shown). However, because convergence
was not achievable without application of a strict mo-
lecular clock, overall node supports for this tree tended
to be lower than the clock-constrained BEST analysis.
These results also suggest that differences in tree top-
ology between concatenated methods and BEST analyses
are not necessarily the result of applying a molecular
clock to the dataset.
To obtain a more robust estimate of the staphylococ-

cal phylogeny using BEST, additional datasets were
assessed in which suspected conflicting loci and taxa
were omitted. Omission of the tuf and rpoB loci, as well
as taxa for which data were missing (i.e., S. agnetis, S.
stepanovicii, and S. devriesei), substantially altered the
branching order of major clades (as compared to original
BEST methodologies incorporating all gene fragments
and taxa), resulting in higher agreement with the conca-
tenated BI and ML analyses (Figure 5). These data also
support our previous ILD tests that suggested a signifi-
cant difference between all loci except 16S rRNA and
dnaJ (above). With the exception of a few notable differ-
ences, the modified BEST analysis was similar to the
concatenated BI and ML analyses (Figure 5). The modi-
fied BEST analysis estimated, with weak support, the
later divergence of S. auricularis as compared to BI and
ML runs. This analysis also estimated a more basal

divergence of the clades containing S. muscae, S. hyicus,
and S. intermedius with a later divergence of clades con-
taining S. pettenkoferi, S. arlettae, S. saprophyticus, and
S. lugdunensis as compared to concatenated analyses
(Figure 5). S. felis and S. lutrae shared a weakly sup-
ported clade (Pp = 0.44) within this BEST analysis as
compared to belonging to different clades (described
above) in concatenated BI and ML data analyses. S. galli-
narum formed a clade (Pp = 1.00) in the modified BEST
analysis with S. arlettae, and S. kloosii while concate-
nated analyses estimated S. arlettae to form an exclusive
clade with S. kloosii and S. gallinarum belonging to a
more distant clade (compare Figures 3 and 5).

Discussion
Using multilocus data to infer the Staphylococcus
phylogeny
Staphylococcus is a species-rich genus of importance
from both a human health and economic perspective.
Relevant to the first goal of this study, our results pro-
vide strong evidence that the current groupings of
Staphylococcus species require revision, and provide a
clear consensus across analyses on how this could be
done to reflect inferred evolutionary relationships among
species groups. The second goal of the study was to infer
higher-level relationships among species and cluster
groups, and our results provide good evidence for much
consensus across methods although there remains some
alternative hypotheses for such higher-level relationships
that differed between methods. To infer phylogenies
relevant to both species-grouping and higher-level rela-
tionships, we used a combination of Bayesian and max-
imum likelihood analyses of multilocus data. We found
that both Bayesian and maximum likelihood analysis of
multilocus data yielded high-resolution species trees
with overall high nodal support values for relationships
among Staphylococcus species. We also found that
partitioned-model analysis of the combined dataset,
versus the concatenation-free analysis using BEST,
produced near-identical estimates of the species com-
position of major clades and putative revised cluster
groupings (i.e., more recent relationships).
In contrast to broad consensus across methods for

resolution of relationships among more recent groupings
of species, concatenated and gene-tree-based methods
(BEST) inferred several alternative relationships among
more ancient lineages of staphylococcal species. It is not
entirely clear, however, what the source of these differ-
ences are (e.g., different evolutionary histories among
genes being differentially resolved between methods, dif-
ference in how methods extracted signal from the multi-
locus data, etc.). It is notable that our finding that the
BEST method inferred similar major clades as the con-
catenated methods, but inferred a different branching

Figure 4 Comparison of nodal support between MrBayes and
maximum likelihood methodologies. Shown is a scatter plot
comparing the differences in MrBayes posterior probabilities (Pp)
and maximum likelihood (ML) bootstrap support (BS) for identical
nodes (Figure 3). Open circles represent Pp support for discordant
nodes present in MrBayes and absent in ML. Open triangles
represent BS values for discordant nodes present in ML and absent
in MrBayes. Note that MrBayes exhibits heightened overall node
support as compared to ML.
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order among these major clades, has also been observed
in other studies [40]. Such an observation may be indica-
tive that although the phylogenetic signal contained
within gene trees affords robust estimates of member-
ship of particular species to major clades, conflicting sig-
nal or simply very little signal for deeper relationships
among major lineages is available from single gene tree
inferences (as in BEST). Our analysis of individual gene
trees further supports this hypothesis whereby there
appears to be substantial disagreement about higher-
level relationships, but individual gene trees are consist-
ent with one another regarding the placement of species
within clusters towards the tips of the tree. It is notable
that the modified BEST analysis, in which only two gene
fragments were incorporated, more consistently resolved
higher order relationships with the concatenated BI and
ML methodologies. This suggests further that conflicting
signal within the other two gene fragments was contrib-
uting to the discord among the original BEST analysis,
incorporating all four loci.
It has been shown that staphylococcal species rou-

tinely laterally transfer genes [58], and it is therefore rea-
sonable to consider that lateral gene transfer might

complicate inference of phylogeny in this study. For ex-
ample, lateral transfer (potentially combined with phylo-
genetic inference error) may explain instances of
disagreement between gene trees and multi-locus infer-
ences. Particularly in the case of inferring bacterial phyl-
ogeny, generally high instances of gene transfer
inherently complicate inference of species-level trees,
and even raise philosophical questions about the mean-
ing of such species-level inferences [59]. Our results do,
however, provide good evidence that there is indeed
phylogenetic signal of an underlying species-level tree
with many shared relationships across analytical meth-
ods, and this tree contrasts strongly with the existing
higher-level classification scheme of the group that was
based on less robust inferences methods. Our results
largely agree across methods about the membership of
species and subspecies to major clades, and thus provide
new important confirmatory information sufficient for
refining the nomenclature of the group.
Historically, staphylococcal species have been clustered

into between four and eleven species groups [6,60-64].
Most of these groupings, however, were inferred based
on a single locus with a small number of staphylococcal

Figure 5 Inference of the staphylococcal phylogeny using Bayesian estimation of species trees (BEST) methodology on 16S rRNA and
dnaJ gene fragments. Shown is a consensus phylogram of the staphylococcal species tree generated under the BEST methodology
incorporating only 16S rRNA and dnaJ gene fragments. Each of the two gene fragments were treated as an individual locus for which individual
gene trees were estimated. Numbers represent posterior probabilities with grey-filled circles representing a posterior probability of 1.00. Refer to
Additional file 7: Figure S5 for the BEST analysis incorporating all four gene fragments.
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taxa. Phylogenetic estimates from this study suggest the
separation of staphylococcal species into six major
staphylococcal species groups comprised of 15 refined
cluster groups (Figure 6). We have used our Bayesian,
partitioned-model concatenated data estimate (i.e., Figure 2)
as the focal phylogeny for illustrating evolutionary group-
ings of Staphylococcus since this phylogeny was also sup-
ported by our ML analysis, and previous reports on
phylogenetic estimates of the staphylococcal phylogeny.

Additionally, this phylogeny was essentially the same
regarding these cluster groups based on the BEST tree.
Current knowledge of phenotypic properties and rela-
tionships among staphylococci are also in agreement
with the staphylococcal phylogeny estimated from conca-
tenated analyses. For example, concatenated analyses
resolved the oxidase positive species as being the sister to
the remaining species, which is sensible given that out-
groups of staphylococcal species are also oxidase positive;

Figure 6 Staphylococcal species can be combined into six species groups and 15 cluster groups. Shown is a summary phylogram
adapted from Figure 2 with clades collapsed to represent staphylococcal groupings. Whenever possible, cluster and species group names were
kept consistent with [64]. Cluster groups have been color-coded to represent: blue, species that are novobiocin resistant, coagulase negative, and
oxidase positive; green, species that are novobiocin susceptible, coagulase negative, and oxidase negative; orange, species that are novobiocin
resistant, coagulase negative, and oxidase negative; purple, species that are novobiocin susceptible, coagulase positive, and oxidase negative;
and red, species that are novobiocin susceptible, coagulase variable, and oxidase negative. Color scheme exceptions are: #S. schleiferi schleiferi is
coagulase negative; *S. simiae is coagulase negative; {S. hominis novobiosepticus is novobiocin resistant; and †S. equorum linens is novobiocin
susceptible. Members of each cluster group are listed below the cluster group name. Nodes receiving Pp= 1.00 or BS = 100% are indicated by
grey-filled circles; otherwise, MrBayes posterior probability is shown in red text, BEST posterior probability is shown in blue text, and ML bootstrap
support is shown in black text. Clades that were not present in BEST or ML are indicated by a blue or black }, respectively.
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this relationship was also observed in the modified BEST
analyses. For the purposes of reference, we indicate on
the concatenated BI tree (Figure 6) where ML concate-
nated and BEST inferences differed. Wherever possible,
we have attempted to name cluster groups and species
groups following the original nomenclature put forth by
Takahashi et al. [64], while recognizing only evolutionar-
ily distinct, monophyletic groupings based on our esti-
mates of phylogeny. As with previous analyses, cluster
groups represent a single monophyletic clade of species,
based on branching pattern [64], while species groups
follow those previously described by Kloos et al. [65] and
present cluster groups sharing similar phenotypic prop-
erties [64,66].

Refined phylogeny and classification of Staphylococcus
spp.
Consistent with previous studies [55,63,64,67,68], our
analyses identified the monophyletic group containing
the novobiocin-resistant, oxidase positive species (Sciuri
group; Figure 6, blue cluster group) as the sister group
to all other Staphylococcus. This cluster group also con-
tains the recently discovered species, S. stepanovicii [11].
Within this group, we inferred a close relationship, with
little sequence divergence, between S. vitulinus and S.
pulvereri (BI and BEST Pp= 1.00; BS = 100%), potentially
supporting the reclassification of S. pulvereri as a later
synonym of S. vitulinus [67]. After the basal divergence
of the Sciuri group, the second lineage to diverge from
the remaining staphylococcal lineages was the oxidase
negative Auricularis group, containing only S. auricu-
laris (Figure 6). Our phylogeny therefore suggests that
cytochrome C oxidase was lost in Staphylococcus some-
time in the common ancestor of S. auricularis and the
remaining Staphylococcus species, after their divergence
from the Sciuri group (Figure 6, red star).
Our phylogenetic placement of S. auricularis as the

sister lineage to all non-Sciuri group staphylococci is
unique to our study, and we find strong support for this
inference (MrBayes Pp = 1.00 and ML BS= 99%). Based
on the 16S rRNA gene alone, Takahashi et al. [64] esti-
mated that S. auricularis shared a common ancestor
with the S. saprophyticus, S. lugdunensis, S. haemolyti-
cus, S. warneri, S. epidermidis and S. aureus cluster
groups. More recently, Ghebremedhin et al. [6] esti-
mated a similar relationship to that of Takahashi et al.
based on 16S rRNA gene alone. Analyses of subsequent
gene fragments, however, yielded varying relationship
estimates for S. auricularis, and no previous studies have
found particularly strong support for the placement of
this lineage. For example, Ghebremedhin et al. [6]
recovered bootstrap support of 31% for a clade contain-
ing S. auricularis and S. kloosii based on the 16S rRNA
gene, although average BS support across their tree was

particularly low, at BS = 52%. Similarly, S. auricularis
was placed as the sister lineage to S. kloosii plus the S.
saprophyticus group, with BS = 25% based on analysis of
the 16S rRNA gene by Takahashi et al. [64].
We inferred that the next lineage of Staphylococcus to

diverge was the Simulans species group (Figure 6), which
contains four species that are all novobiocin susceptible
and coagulase negative. For consistency with previous
nomenclature [6,64], we refer to this clade as the
Simulans-Carnosus cluster group and the species group
as the Simulans group (Figure 6). Our estimate of rela-
tionships among species of this group agree with previ-
ous studies, although the inclusion of S. condimenti in
our trees is novel [6,64]. We inferred a single clade
(Simulans-Carnosus cluster) containing the novobiocin
susceptible, coagulase negative species, S. simulans, S.
condimenti, S. carnosus and S. piscifermentans.
Following the split of these three early-diverging

lineages, the remaining Staphylococcus species diverged
into three large species groups. The first of these to
diverge from the remaining was the Saprophyticus spe-
cies group (Figure 6), which we inferred consists of
four cluster groups. Within this species group, the
Pettenkoferi-Massiliensis cluster group contains novo-
biocin susceptible species while all of the remaining
members of the Saprophyticus group are novobiocin re-
sistant. Thus, it seems that an alternative gyrase B gene
conferring novobiocin resistance may have been acquired
in this clade sometime after the Pettenkoferi-Massiliensis
cluster group diverged from the rest of the Saprophyticus
species group. Based on analysis of the 16S rRNA gene,
Al Masalma et al. [55] reported the newly discovered
species S. massiliensis to be a member of the Simulans
group, although they failed to recover this relationship
in analyses of the dnaJ, rpoB, and tuf genes, where they
instead placed it with S. pettenkoferi as we have here.
It is also notable that the close relationship between
these coagulase-negative species was also suggested based
on their phenotypic similarities across a range of bio-
chemical tests [55]. Additionally, in the Saprophyticus
cluster group, we inferred a close relationship between
S. equorum, S. succinus, S. saprophyticus, and S. xylosus
with S. gallinarum as the sister lineage to these four spe-
cies. The placement of S. gallinarum in other studies is
variable, but on multiple occasions has clustered with the
Arlettae-Kloosii group [6,57,60,63,64]. This alternative
placement of S. gallinarum seems reasonable as we find
the Arlettae-Kloosii cluster group to be closely related to
the Saprophyticus cluster group (Figure 6).
The Epidermidis-Aureus species group contained five

cluster groups, including the most common taxa of
heightened clinical significance [6]. In general, our esti-
mates of relationships among these species are consist-
ent with previous reconstructions [57,64]. Relationships
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within the Haemolyticus cluster group also agree with
previous estimates [64], with the placement of the re-
cently discovered coagulase-negative bovine strain, S.
devriesei, forming a clade with S. haemolyticus [69].
Lastly, the Hyicus-Intermedius species group contained
species of the "S. hyicus-S. intermedius cluster group"
originally proposed by Takahashi et al. [64] based on a
16S rRNA gene dataset, and additional studies have
found similar estimates of relationships based on ana-
lyses of other loci [1,6,60,61,63,70]. The limited number
of taxa assessed in these studies has, however, prevented
a more detailed understanding of species relationships
within this species group prior to our analysis here.
Moreover, recent novel species discovery (in particular S.
rostri [70], S. microti [1], and S. agnetis [57]) has also
contributed to the enhanced diversity of the Hyicus-
Intermedius group. We have divided this species group
into three cluster groups based on their phylogenetic
relationships, which is also supported by their pheno-
typic diversities (Figure 6). Species among the Interme-
dius cluster group are all coagulase positive, excepting S.
schleiferi schleiferi. Interestingly, S. schleiferi coagulans is
coagulase positive, consistent with the other members of
this cluster group, implying a recent loss in S. schleiferi
schleiferi. In contrast, the Muscae cluster group contains
only coagulase negative species (S. muscae, S. rostri, and
S. microti). Within the last two years, both S. rostri [70]
and S. microti [1] were discovered and found to cluster
with S. muscae, thus altering previously known relation-
ships within this species group. The Hyicus cluster
group is coagulase-variable, including coagulase positive
(S. hyicus), negative (S. chromogenes, S. felis), and vari-
able (S. agnetis) species (Figure 6, red cluster group).

Conclusions
Through the analysis of multiple loci under a variety of
phylogenetic methods, we achieved one of our main
goals of inferring a robust estimate of the cluster group-
ings among staphylococcal species. We have used this
estimate of cluster groupings to refine the current
knowledge of the systematics and nomenclature for this
important genus. Our results also contribute to a pre-
sumably more accurate understanding of the higher-level
relationships among Staphylococcus species, although
we do note that there are several outstanding questions
left by the alternative resolutions of our concatenated
versus species-tree-based inferences. We have attempted
to present these yet unresolved inferences in a trans-
parent fashion such that future work might directly
test remaining alternative hypotheses and add further
clarity to the relatively small number of remaining ques-
tions about relationships among staphylococcal species.
The availability of such a comprehensive estimate of
the evolutionary origins of, and relationships among,

staphylococci provides an important context for under-
standing patterns of gain and loss of genetic and
physiological attributes, and the potential role of lateral
gene transfer in both pathologically-relevant phenotypes
and in estimation of phylogenetic relationships among
species. Such questions are of particular relevance con-
sidering the clinical and economical significance of
some Staphylococcus species. Approaches such as this
will provide a more natural classification of species
based on phylogenetic inferences and lend support to
future evolutionarily-informed studies of microbial di-
versity and physiology.

Additional files

Additional file 1: Table S1. GenBank accession numbers for 16S
rRNA gene fragments, dnaJ, rpoB, and tuf gene fragments analyzed
in this study.

Additional file 2: Table S2. Evolutionary models for each partition
were chosen based on AIC using jModelTest.

Additional file 3: Figure S1. Gene trees for individual loci assessed
in this study. Shown are Bayesian 50% majority rule phylograms for A)
the 16S rRNA, B) dnaJ, C) rpoB, and D) tuf gene fragments. MrBayes was
run under the same conditions as those used for concatenated analyses
with evolutionary model specified for whole gene fragments in
Additional file 2: Table S2. Numbers represent posterior probabilities with
grey-filled circles representing a posterior support of 1.00.

Additional file 4: Figure S2. Bayesian inferences of phylogeny are
highly reproducible, regardless of model employed. Shown are plots
of post-burnin generational log likelihoods (lnL) from five representative
partitioning strategies across triplicate concatenated BI runs (A); and
duplicate BEST runs (B). All runs were highly reproducible regardless of
methodology and partitioning strategy.

Additional file 5: Figure S3. Tree length (TL) analysis indicates that
overparameterization may be occurring within more highly
partitioned datasets. Shown are post-burnin generational TL estimates
for partitioning strategies assessed in this study. Note that as the
complexity of partitioning increases evidence of increased TL and failed
convergence is observed.

Additional file 6: Figure S4. Model partitioning increases the mean
tree length (TL) and run variance. Shown is a box plot indicating the
mean TL and 95% confidence interval among partitioning strategies.

Additional file 7: Figure S5. Inference of phylogeny using Bayesian
estimation of species trees (BEST). Shown is a consensus phylogram of
the staphylococcal species tree generated using all four gene fragments
under the BEST methodology. Each gene fragment was treated as an
individual locus for which individual gene trees were estimated (similar
to MB3). Numbers represent posterior probabilities with grey-filled circles
representing a posterior probability of 1.00.
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