23 research outputs found

    Microfluidic rheometry

    Get PDF
    The development and growth of microfluidics has stimulated interest in the behaviour of complex liquids in micro-scale geometries and provided a rich platform for rheometric investigations of non-Newtonian phenomena at small scales. Microfluidic techniques present the rheologist with new opportunities for material property measurement and this review discusses the use of microfluidic devices to measure bulk rheology in both shear and extensional flows. Capillary, stagnation and contraction flows are presented in this context and developments, limitations and future perspectives are examined

    Microfluidic extensional rheometry using a hyperbolic contraction geometry

    Get PDF
    Microfluidic devices are ideally suited for the study of complex fluids undergoing large deformation rates in the absence of inertial complications. In particular, a microfluidic contraction geometry can be utilized to characterize the material response of complex fluids in an extensionally-dominated flow, but the mixed nature of the flow kinematics makes quantitative measurements of material functions such as the true extensional viscosity challenging. In this paper, we introduce the ‘extensional viscometer-rheometer-on-a-chip’ (EVROC), which is a hyperbolically-shaped contraction-expansion geometry fabricated using microfluidic technology for characterizing the importance of viscoelastic effects in an extensionally-dominated flow at large extension rates (λ[. over ε][subscript a] ≫ 1, where λ is the characteristic relaxation time, or for many industrial processes . over ε][subscript a] ≫ 1 s[superscript −1]). We combine measurements of the flow kinematics, the mechanical pressure drop across the contraction and spatially-resolved flow-induced birefringence to study a number of model rheological fluids, as well as several representative liquid consumer products, in order to assess the utility of EVROC as an extensional viscosity indexer.National Science Foundation (U.S.). Graduate Research FellowshipUnited States. National Aeronautics and Space Administration (Microgravity Fluid Sciences Grant NNX09AV99G)European Commission. Marie Curie Actions (FP7-PEOPLE-2011-IIF Grant 298220

    Isotopic biographies reveal horse rearing and trading networks in medieval London

    Get PDF
    This paper reports a high-resolution isotopic study of medieval horse mobility, revealing their origins and in-life mobility both regionally and internationally. The animals were found in an unusual horse cemetery site found within the City of Westminster, London, England. Enamel strontium, oxygen, and carbon isotope analysis of 15 individuals provides information about likely place of birth, diet, and mobility during the first approximately 5 years of life. Results show that at least seven horses originated outside of Britain in relatively cold climates, potentially in Scandinavia or the Western Alps. Ancient DNA sexing data indicate no consistent sex-specific mobility patterning, although three of the five females came from exceptionally highly radiogenic regions. Another female with low mobility is suggested to be a sedentary broodmare. Our results provide direct and unprecedented evidence for a variety of horse movement and trading practices in the Middle Ages and highlight the importance of international trade in securing high-quality horses for medieval London elites

    Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear

    Get PDF
    We explore the behavior of a wormlike micellar solution under both steady and large amplitude oscillatory shear (LAOS) in a cone–plate geometry through simultaneous bulk rheometry and localized velocimetric measurements. First, particle image velocimetry is used to show that the shear-banded profiles observed in steady shear are in qualitative agreement with previous results for flow in the cone–plate geometry. Then under LAOS, we observe the onset of shear-banded flow in the fluid as it is progressively deformed into the non-linear regime—this onset closely coincides with the appearance of higher harmonics in the periodic stress signal measured by the rheometer. These harmonics are quantified using the higher-order elastic and viscous Chebyshev coefficients e [subscript n] and v [subscript n] , which are shown to grow as the banding behavior becomes more pronounced. The high resolution of the velocimetric imaging system enables spatiotemporal variations in the structure of the banded flow to be observed in great detail. Specifically, we observe that at large strain amplitudes (γ [subscript 0] ≥ 1), the fluid exhibits a three-banded velocity profile with a high shear rate band located in-between two lower shear rate bands adjacent to each wall. This band persists over the full cycle of the oscillation, resulting in no phase lag being observed between the appearance of the band and the driving strain amplitude. In addition to the kinematic measurements of shear banding, the methods used to prevent wall slip and edge irregularities are discussed in detail, and these methods are shown to have a measurable effect on the stability boundaries of the shear-banded flow.Spain. Ministerio de Educación y Ciencia (MEC) (Project FIS2010-21924-C02-02

    Lentiviral Vector Platform for Production of Bioengineered Recombinant Coagulation Factor VIII

    No full text
    Patients with hemophilia A present with spontaneous and sometimes life-threatening bleeding episodes that are treated using blood coagulation factor VIII (fVIII) replacement products. Although effective, these products have limited availability worldwide due to supply limitations and product costs, which stem largely from manufacturing complexity. Current mammalian cell culture manufacturing systems yield around 100 µg/l of recombinant fVIII, with a per cell production rate of 0.05 pg/cell/day, representing 10,000-fold lesser production than is achieved for other similar-sized recombinant proteins (e.g. monoclonal antibodies). Expression of human fVIII is rate limited by inefficient transport through the cellular secretory pathway. Recently, we discovered that the orthologous porcine fVIII possesses two distinct sequence elements that enhance secretory transport efficiency. Herein, we describe the development of a bioengineered fVIII product using a novel lentiviral-driven recombinant protein manufacturing platform. The combined implementation of these technologies yielded production cell lines that biosynthesize in excess of 2.5 mg/l of recombinant fVIII at the rate of 9 pg/cell/day, which is the highest level of recombinant fVIII production reported to date, thereby validating the utility of both technologies

    Factor VIII A3 domain substitution N1922S results in hemophilia A due to domain-specific misfolding and hyposecretion of functional protein

    No full text
    A point mutation leading to amino acid substitution N1922S in the A3 domain of factor VIII (fVIII) results in moderate to severe hemophilia A. A heterologous expression system comparing N1922S-fVIII and wild-type fVIII (wt-fVIII) demonstrated similar specific coagulant activities but poor secretion of N1922S-fVIII. Immunocytochemical analysis revealed that intracellular levels of N1922S-fVIII were similar to those of wt-fVIII. The specific activity of intracellular N1922S-fVIII was 10% of that of wt-fVIII, indicating the presence of large amounts of a nonfunctional N1922S-fVIII–folding intermediate. wt-fVIII colocalized with both endoplasmic reticulum (ER)– and Golgi-resident proteins. In contrast, N1922S-fVIII colocalized only with ER-resident proteins, indicating a block in transit from the ER to the Golgi. A panel of conformation-dependent monoclonal antibodies was used to determine native or nonnative folding of N1922S-fVIII. Intracellular N1922S-fVIII but not secreted N1922S-fVIII displayed abnormal folding in the A3 and C1 domains, indicating that the A1, A2, and C2 domains fold independently into antigenically intact tertiary structures, but that folding is stalled in the mutant A3 and its contiguous C1 domain. In summary, the N1922S substitution results in poor secretion of a functional protein, and the domain-specific defect in folding and intracellular trafficking of N1922S-fVIII is a novel mechanism for secretion defects leading to hemophilia A
    corecore