330 research outputs found
Synthesis And Characterization Of (pyNOâ)2GaCl: A Redox-Active Gallium Complex
We report the synthesis of a gallium complex incorporating redox-active pyridyl nitroxide ligands. The (pyNOâ)2GaCl complex was prepared in 85% yield via a salt metathesis route and was characterized by 1H and 13C NMR spectroscopies, X-ray diffraction, and theory. UVâVis absorption spectroscopy and electrochemistry were used to access the optical and electrochemical properties of the complex, respectively. Our discussion focuses primarily on a comparison of the gallium complex to the corresponding aluminum derivative and shows that although the complexes are very similar, small differences in the electronic structure of the complexes can be correlated to the identity of the metal
Toggle release
A pyrotechnic actuated structural release device 10 which is mechanically two fault tolerant for release. The device 10 comprises a fastener plate 11 and fastener body 12, each attachable to a different one of a pair of structures to be joined. The fastener plate 11 and body 12 are fastenable by a toggle 13 supported at one end on the fastener plate and mounted for universal pivotal movement thereon. At its other end which is received in a central opening in the fastener body 12 and adapted for limited pivotal movement therein the toggle 13 is restrained by three retractable latching pins 61 symmetrically disposed in equiangular spacing about the axis of the toggle 13 and positionable in latching engagement with an end fitting on the toggle. Each pin 61 is individually retractable by combustion of a pyrotechnic charge 77, the expanding gases of which are applied to a pressure receiving face 67 on the latch pin 61 to effect its retraction from the toggle. While retraction of all three pins 62 releases the toggle, the fastener is mechanically two fault tolerant since the failure of any single one or pair of the latch pins to retract results in an asymmetrical loading on the toggle and its pivotal movement to effect a release. An annular bolt 18 is mounted on the fastener plate 11 as a support for the socket mounting 30, 37 of the toggle whereby its selective axial movement provides a means for preloading the toggle
The DEEP2 Galaxy Redshift Survey: Mean Ages and Metallicities of Red Field Galaxies at z ~ 0.9 from Stacked Keck/DEIMOS Spectra
As part of the DEEP2 galaxy redshift survey, we analyze absorption line
strengths in stacked Keck/DEIMOS spectra of red field galaxies with weak to no
emission lines, at redshifts 0.7 <= z <= 1. Comparison with models of stellar
population synthesis shows that red galaxies at z ~ 0.9 have mean
luminosity-weighted ages of the order of only 1 Gyr and at least solar
metallicities. This result cannot be reconciled with a scenario where all stars
evolved passively after forming at very high z. Rather, a significant fraction
of stars can be no more than 1 Gyr old, which means that star formation
continued to at least z ~ 1.2. Furthermore, a comparison of these distant
galaxies with a local SDSS sample, using stellar populations synthesis models,
shows that the drop in the equivalent width of Hdelta from z ~ 0.9 to 0.1 is
less than predicted by passively evolving models. This admits of two
interpretations: either each individual galaxy experiences continuing low-level
star formation, or the red-sequence galaxy population from z ~ 0.9 to 0.1 is
continually being added to by new galaxies with younger stars.Comment: A few typos were corrected and numbers in Table 1 were revise
Does solar irradiation drive community assembly of vulture plumage microbiotas?
Abstract Background Stereotyped sunning behaviour in birds has been hypothesized to inhibit keratin-degrading bacteria but there is little evidence that solar irradiation affects community assembly and abundance of plumage microbiota. The monophyletic New World vultures (Cathartiformes) are renowned for scavenging vertebrate carrion, spread-wing sunning at roosts, and thermal soaring. Few avian species experience greater exposure to solar irradiation. We used 16S rRNA sequencing to investigate the plumage microbiota of wild individuals of five sympatric species of vultures in Guyana. Results The exceptionally diverse plumage microbiotas (631 genera of Bacteria and Archaea) were numerically dominated by bacterial genera resistant to ultraviolet (UV) light, desiccation, and high ambient temperatures, and genera known for forming desiccation-resistant endospores (phylum Firmicutes, order Clostridiales). The extremophile genera Deinococcus (phylum Deinococcus-Thermus) and Hymenobacter (phylum, Bacteroidetes), rare in vertebrate gut microbiotas, accounted for 9.1% of 2.7 million sequences (CSS normalized and log2 transformed). Five bacterial genera known to exhibit strong keratinolytic capacities in vitro (Bacillus, Enterococcus, Pseudomonas, Staphylococcus, and Streptomyces) were less abundant (totaling 4%) in vulture plumage. Conclusions Bacterial rank-abundance profiles from melanized vulture plumage have no known analog in the integumentary systems of terrestrial vertebrates. The prominence of UV-resistant extremophiles suggests that solar irradiation may play a significant role in the assembly of vulture plumage microbiotas. Our results highlight the need for controlled in vivo experiments to test the effects of UV on microbial communities of avian plumage
Factors affecting farmersâ willingness to grow alternative biofuel feedstocks across Kansas
Energy conservation has emerged as one of the biggest challenges of the world in the XXI century, and not different from many countries, the US has created plans and policies to stimulate renewable energy alternative. Among the important alternatives for energy conservation is the use of biomass energy. Despite these stimuli production predictions are not confident that production would achieve the planned target for the U.S. Consequently, the predictions raise questions about farmer's willingness to grow bioenergy crops or produce alternative cellulosic feedstocks. In other words, farmers and landholders may not be willing to grow bioenergy crops. With this concerns in mind, the study advances previous research about bioenergy production by evaluating farmer's and landholder's willingness to produce different varieties of biofuel feedstocks. To achieve our goals, we used a mail survey of Kansas farmers conducted from January to April of 2011. The survey contained questions related to how farmers make their land-use decisions covering a wide array of topics. Through this survey, we evaluate the effect of farm characteristics, farm management practices, farmer perceptions (such as risk aversion), physical variables (such as soil, weather, and the availability of water for irrigation) on farmers' willingness to produce value-added feedstocks (e.g., corn stover), dedicated annual bioenergy crops (e.g., energy sorghum), and dedicated perennial bioenergy crops (e.g., switchgrass) for biofuel production in Kansas, though the use of logistic regressions and marginal effects
Two novel energy crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. - State of knowledge
Current global temperature increases resulting from human activity threaten many ecosystems and societies, and have led to international and national policy commitments that aim to reduce greenhouse gas emissions. Bioenergy crops provide one means of reducing greenhouse gas emissions from energy production and two novel crops that could be used for this purpose are Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. This research examined the existing scientific literature available on both crops through a systematic review. The data were collated according to the agronomy, uses, and environmental benefits of each crop. Possible challenges were associated with high initial planting costs, low yields in low rainfall areas, and for Sida hermaphrodita, vulnerability to Sclerotinia sclerotiorum. However, under appropriate environmental conditions, both crops were found to provide large yields over sustained periods of time with relatively low levels of management and could be used to produce large energy surpluses, either through direct combustion or biogas production. Other potential uses included fodder, fibre, and pharmaceutical uses. Environmental benefits included the potential for phytoremediation, and improvements to soil health, biodiversity, and pollination. The review also demonstrated that environmental benefits, such as pollination, soil health, and water quality benefits could be obtained from the use of Sida hermaphrodita and Silphium perfoliatum relative to existing bioenergy crops such as maize, whilst at the same time reducing the greenhouse gas emissions associated with energy production. Future research should examine the long-term implications of using Sida hermaphrodita and Silphium perfoliatum as well as improve knowledge on how to integrate them successfully within existing farming systems and supply chains
The Origin of the 24-micron Excess in Red Galaxies
Observations with the Spitzer Space Telescope have revealed a population of
red-sequence galaxies with a significant excess in their 24-micron emission
compared to what is expected from an old stellar population. We identify 900
red galaxies with 0.15<z<0.3 from the AGN and Galaxy Evolution Survey (AGES)
selected from the NOAO Deep Wide-Field Survey Bootes field. Using Spitzer/MIPS,
we classify 89 (~10%) with 24-micron infrared excess (f24>0.3 mJy). We
determine the prevalence of AGN and star-formation activity in all the AGES
galaxies using optical line diagnostics and mid-IR color-color criteria. Using
the IRAC color-color diagram from the IRAC Shallow Survey, we find that 64% of
the 24-micron excess red galaxies are likely to have strong PAH emission
features in the 8-micron IRAC band. This fraction is significantly larger than
the 5% of red galaxies with f24<0.3 mJy that are estimated to have strong PAH
emission, suggesting that the infrared emission is largely due to
star-formation processes. Only 15% of the 24-micron excess red galaxies have
optical line diagnostics characteristic of star-formation (64% are classified
as AGN and 21% are unclassifiable). The difference between the optical and
infrared results suggest that both AGN and star-formation activity is occurring
simultaneously in many of the 24-micron excess red galaxies. These results
should serve as a warning to studies that exclusively use optical line
diagnostics to determine the dominant emission mechanism in the infrared and
other bands. We find that ~40% of the 24-micron excess red galaxies are edge-on
spiral galaxies with high optical extinctions. The remaining sources are likely
to be red galaxies whose 24-micron emission comes from a combination of
obscured AGN and star-formation activity.Comment: ApJ, accepted; 11 pages, 7 figures; corrected reference to IRAC
Shallow Survey in abstrac
- âŚ