21 research outputs found
Targeted ToF-SIMS Analysis of Macrophage Content from a Human Cranial Triphasic Calcium Phosphate Implant
Macrophages play a key role in determining the fate of implanted biomaterials, especially for biomaterials such as calcium phosphates (CaPs) where these cells play a vital role in material resorption and osteogenesis, as shown in different models, including clinical samples. Although substantial consideration is given to the design and validation of different CaPs, relatively little is known about their material-cell interaction. Specifically, the intracellular content of different CaP phases remains to be assessed, even though CaP-filled macrophages have been observed in several studies. In this study, 2D/3D ToF-SIMS imaging and multivariate analysis were directly applied on the histology samples of an explant to reveal the content of macrophages. The cellular content of the macrophages was analyzed to distinguish three CaP phases, monetite, beta-tricalcium phosphate, and pyrophosphate, which are all part of the monetite-based CaP implant composition under study. ToF-SIMS combined with histology revealed that the content of the identified macrophages was most similar to that of the pyrophosphate phase. This study is the first to uncover distinct CaP phases in macrophages from a human multiphasic CaP explant by targeted direct cell content analysis. The uncovering of pyrophosphate as the main phase found inside the macrophages is of great importance to understand the impact of the selected material in the process of biomaterial-instructed osteogenesis
Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial
Background:
Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke.
Methods:
We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515.
Findings:
Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group.
Interpretation:
In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes.
Funding:
GlaxoSmithKline
Recommended from our members
Inositol pyrophosphates: structure, enzymology and function
The stereochemistry of the inositol backbone provides a platform on which to generate a vast array of distinct molecular motifs that are used to convey information both in signal transduction and many other critical areas of cell biology. Diphosphoinositol phosphates, or inositol pyrophosphates, are the most recently characterized members of the inositide family. They represent a new frontier with both novel targets within the cell and novel modes of action. This includes the proposed pyrophosphorylation of a unique subset of proteins. We review recent insights into the structures of these molecules and the properties of the enzymes which regulate their concentration. These enzymes also act independently of their catalytic activity via protein-protein interactions. This unique combination of enzymes and products has an important role in diverse cellular processes including vesicle trafficking, endo- and exocytosis, apoptosis, telomere length regulation, chromatin hyperrecombination, the response to osmotic stress, and elements of nucleolar function
Recommended from our members
Diphosphoinositol pentakisphosphate as a novel mediator of insulin exocytosis
Patient-Specific Titanium-Reinforced Calcium Phosphate Implant for the Repair and Healing of Complex Cranial Defects
BACKGROUND: The reconstruction of complex cranial defects is challenging and is associated with a high complication rate. The development of a patient-specific, titanium-reinforced, calcium phosphate-based (CaP-Ti) implant with bone regenerative properties has previously been described in 2 case studies with the hypothesis that the implant may improve clinical outcome. OBJECTIVE: To identify whether the introduction of CaP-Ti implant has the potential to improve clinical outcome. METHODS: A retrospective review of all patients having undergone CaP-Ti cranioplasty was conducted. Comprehensive clinical data were collected from the hospital computer database and patient records. Bone formation and osseointegration were analyzed in a single retrieval specimen. RESULTS: Fifty patients, with 52 cranial defects, met the inclusion criteria. The patient cohort displayed a previous failure rate of 64% (32/50) with autologous bone, alloplastic materials, or both. At a median follow-up time of 25 months, the explantation rate due to either early postoperative infection or persistent wound dehiscence was 1.9% (1/53) or 3.8% (2/53), respectively. Surgical intervention with local wound revision was required in 2 patients without the need of implant removal. One patient had a brain tumor recurrence, and the implant was explanted 31 months after implantation. Histologic examination showed that the entire implant was partly yet evenly transformed into vascularized compact bone. CONCLUSION: In the present study the CaP-Ti implant appears to have improved the clinical outcomes in a cohort of patients with a high rate of previous cranioplasty failures. The bone regenerative effect may in particular have an impact on the long-term success rate of the implant
Titanium reinforced calcium phosphate improves bone formation and osteointegration in ovine calvaria defects : a comparative 52 weeks study
In a 52 week ovine calvaria implantation model, the restoration of cranial defects with a bare titanium mesh (Ti-mesh) and a titanium mesh embedded in a calcium phosphate (CaP-Ti) were evaluated in seven animals. During the study, no major clinical abnormalities were observed, and all sheep presented a normal neurologic assessment. Blood and cerebrospinal fluid analysis, made at termination, did not show any abnormalities. No indentation of the soft tissue was observed for either test article; however, the Ti-mesh burr-hole covers were associated with filling of the calvarial defect by fibrous tissue mainly. Some bone formation was observed at the bottom of the created defect, but no significant bone was formed in the proximity of the implant. The defect sites implanted with CaP-Ti were characterized by a moderate degradation of the calcium phosphate (CaP) that was replaced by mature bone tissue. Calcium-phosphate-filled macrophages were observed in all animals, indicating that they might play a vital role in osteogenesis. The newly formed bone was present, especially at the bony edges of the defect and on the dura side. Integration of the Ti-mesh in a CaP improved bone formation and osteointegration in comparison to a bare Ti-mesh
Fatal Acute Hemorrhagic Encephalomyelitis and Antiphospholipid Antibodies following SARS-CoV-2 Vaccination: A Case Report
Acute hemorrhagic encephalomyelitis (AHEM) is a rare hyperacute form of acute disseminated encephalomyelitis (ADEM). The disease is characterized by fulminant inflammation and demyelination in the brain and spinal cord and is often preceded by an infection or vaccination. This case report presents a 53-year-old male with rheumatoid arthritis and ongoing treatment with methotrexate and etanercept who developed fatal AHEM following the second dose of the COVID-19 vaccine. The disease course was complicated by multiorgan thromboembolic disease and the presence of high/moderate levels of cardiolipin IgG antibodies and anti-beta-2 glycoprotein 1 IgG antibodies suggesting a possible antiphospholipid syndrome. Treatment with immunosuppressive therapies failed to improve the course. The report comprises comprehensive clinical, neuroimaging, and neuropathological findings. The case highlights diagnostic challenges in a patient with several preceding risk factors, including autoimmune disease, immunotherapy, and vaccination, with possible pathophysiological implications. The temporal association with the COVID-19 vaccination may suggest possible causality although evidence cannot be ascertained. Reporting possible adverse events following COVID-19 vaccination is important to identify at-risk populations and to accomplish control of the current pandemic
Fatal Acute Hemorrhagic Encephalomyelitis and Antiphospholipid Antibodies following SARS-CoV-2 Vaccination: A Case Report
Acute hemorrhagic encephalomyelitis (AHEM) is a rare hyperacute form of acute disseminated encephalomyelitis (ADEM). The disease is characterized by fulminant inflammation and demyelination in the brain and spinal cord and is often preceded by an infection or vaccination. This case report presents a 53-year-old male with rheumatoid arthritis and ongoing treatment with methotrexate and etanercept who developed fatal AHEM following the second dose of the COVID-19 vaccine. The disease course was complicated by multiorgan thromboembolic disease and the presence of high/moderate levels of cardiolipin IgG antibodies and anti-beta-2 glycoprotein 1 IgG antibodies suggesting a possible antiphospholipid syndrome. Treatment with immunosuppressive therapies failed to improve the course. The report comprises comprehensive clinical, neuroimaging, and neuropathological findings. The case highlights diagnostic challenges in a patient with several preceding risk factors, including autoimmune disease, immunotherapy, and vaccination, with possible pathophysiological implications. The temporal association with the COVID-19 vaccination may suggest possible causality although evidence cannot be ascertained. Reporting possible adverse events following COVID-19 vaccination is important to identify at-risk populations and to accomplish control of the current pandemic
Protein kinase- and lipase inhibitors of inositide metabolism deplete IP7 indirectly in pancreatic β-cells: Off-target effects on cellular bioenergetics and direct effects on IP6K activity
Inositol pyrophosphates have emerged as important regulators of many critical cellular processes from vesicle trafficking and cytoskeletal rearrangement to telomere length regulation and apoptosis. We have previously demonstrated that 5-di-phosphoinositol pentakisphosphate, IP7, is at a high level in pancreatic β-cells and is important for insulin exocytosis. To better understand IP7 regulation in β-cells, we used an insulin secreting cell line, HIT-T15, to screen a number of different pharmacological inhibitors of inositide metabolism for their impact on cellular IP7. Although the inhibitors have diverse targets, they all perturbed IP7 levels. This made us suspicious that indirect, off-target effects of the inhibitors could be involved. It is known that IP7 levels are decreased by metabolic poisons. The fact that the inositol hexakisphosphate kinases (IP6Ks) have a high Km for ATP makes IP7 synthesis potentially vulnerable to ATP depletion. Furthermore, many kinase inhibitors are targeted to the ATP binding site of kinases, but given the similarity of such sites, high specificity is difficult to achieve. Here, we show that IP7 concentrations in HIT-T15 cells were reduced by inhibitors of PI3K (wortmannin, LY294002), PI4K (Phenylarsine Oxide, PAO), PLC (U73122) and the insulin receptor (HNMPA). Each of these inhibitors also decreased the ATP/ADP ratio. Thus reagents that compromise energy metabolism reduce IP7 indirectly. Additionally, PAO, U73122 and LY294002 also directly inhibited the activity of purified IP6K. These data are of particular concern for those studying signal transduction in pancreatic β-cells, but also highlight the fact that employment of these inhibitors could have erroneously suggested the involvement of key signal transduction pathways in various cellular processes. Conversely, IP7’s role in cellular signal transduction is likely to have been underestimated.
[Display omitted]
•In pancreatic β-cells several inhibitors of signal transduction reduce IP7 levels.•There is a positive correlation between IP7 reduction and decrease in ATP/ADP.•Inhibitors deplete IP7 levels indirectly by decreasing ATP/ADP levels.•Some purportedly specific cell-signaling inhibitors directly target IP6K activity.•Caution is required in interpreting data obtained using inhibitors of inositide metabolism
Defects in β-cell Ca2+ dynamics in age-induced diabetes
Little is known about the molecular mechanisms underlying age-dependent deterioration in β-cell function. We now demonstrate that age-dependent impairment in insulin release, and thereby glucose homeostasis, is associated with subtle changes in Ca2+ dynamics in mouse β-cells. We show that these changes are likely to be accounted for by impaired mitochondrial function and to involve phospholipase C/inositol 1,4,5-trisphosphate–mediated Ca2+ mobilization from intracellular stores as well as decreased β-cell Ca2+ influx over the plasma membrane. We use three mouse models, namely, a premature aging phenotype, a mature aging phenotype, and an aging-resistant phenotype. Premature aging is studied in a genetically modified mouse model with an age-dependent accumulation of mitochondrial DNA mutations. Mature aging is studied in the C57BL/6 mouse, whereas the 129 mouse represents a model that is more resistant to age-induced deterioration. Our data suggest that aging is associated with a progressive decline in β-cell mitochondrial function that negatively impacts on the fine tuning of Ca2+ dynamics. This is conceptually important since it emphasizes that even relatively modest changes in β-cell signal transduction over time lead to compromised insulin release and a diabetic phenotype.Accepted versio