41 research outputs found

    Neuro-Immune Circuits Regulate Immune Responses in Tissues and Organ Homeostasis

    Get PDF
    The dense innervation of the gastro-intestinal tract with neuronal networks, which are in close proximity to immune cells, implies a pivotal role of neurons in modulating immune functions. Neurons have the ability to directly sense danger signals, adapt immune effector functions and integrate these signals to maintain tissue integrity and host defense strategies. The expression pattern of a large set of immune cells in the intestine characterized by receptors for neurotransmitters and neuropeptides suggest a tight neuronal hierarchical control of immune functions in order to systemically control immune reactions. Compelling evidence implies that targeting neuro-immune interactions is a promising strategy to dampen immune responses in autoimmune diseases such as inflammatory bowel diseases or rheumatoid arthritis. In fact, electric stimulation of vagal fibers has been shown to be an extremely effective treatment strategy against overwhelming immune reactions, even after exhausted conventional treatment strategies. Such findings argue that the nervous system is underestimated coordinator of immune reactions and underline the importance of neuro-immune crosstalk for body homeostasis. Herein, we review neuro-immune interactions with a special focus on disease pathogenesis throughout the gastro-intestinal tract

    Review of AdS/CFT Integrability: An Overview

    Get PDF
    This is the introductory chapter of a review collection on integrability in the context of the AdS/CFT correspondence. In the collection we present an overview of the achievements and the status of this subject as of the year 2010.Comment: 31 pages, v2: reference added, references to other chapters updated, v3: footnote 1 on location of references added, v4: minor changes, references added, accepted for publication in Lett. Math. Phys, v5: minor corrections, links to chapters updated, attached IntAdS.pdf with all chapters in one file, see http://arxiv.org/src/1012.3982/anc/IntAdS.pdf or http://www.phys.ethz.ch/~nbeisert/IntAdS.pd

    ILC3s restrict the dissemination of intestinal bacteria to safeguard liver regeneration after surgery.

    Get PDF
    It is generally believed that environmental or cutaneous bacteria are the main origin of surgical infections. Therefore, measures to prevent postoperative infections focus on optimizing hygiene and improving asepsis and antisepsis. In a large cohort of patients with infections following major surgery, we identified that the causative bacteria are mainly of intestinal origin. Postoperative infections of intestinal origin were also found in mice undergoing partial hepatectomy. CCR6+ group 3 innate lymphoid cells (ILC3s) limited systemic bacterial spread. Such bulwark function against host invasion required the production of interleukin-22 (IL-22), which controlled the expression of antimicrobial peptides in hepatocytes, thereby limiting bacterial spread. Using genetic loss-of-function experiments and punctual depletion of ILCs, we demonstrate that the failure to restrict intestinal commensals by ILC3s results in impaired liver regeneration. Our data emphasize the importance of endogenous intestinal bacteria as a source for postoperative infection and indicate ILC3s as potential new targets

    Anti-microbial Functions of group 3 innate lymphoid cells in gut-associated lymphoid tissues are regulated by G-protein-coupled receptor 183

    Get PDF
    Summary: The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. : Chu et al. demonstrate that GPR183 and its ligand 7α,25-OHC regulate the accumulation, distribution, and anti-microbial and tissue-protective functions of group 3 innate lymphoid cells, thus revealing a critical role for this pathway in promoting innate immunity against enteric bacterial infection. Keywords: group 3 innate lymphoid cells, GPR183, mesenteric lymph node, intestine, accumulation, distribution, anti-microbia

    Eomes is sufficient to regulate IL-10 expression and cytotoxic effector molecules in murine CD4+ T cells

    Get PDF
    The T-box transcription factors T-bet and Eomesodermin regulate type 1 immune responses in innate and adaptive lymphocytes. T-bet is widely expressed in the immune system but was initially identified as the lineage-specifying transcription factor of Th1 CD4+ T cells, where it governs expression of the signature cytokine IFN- γ and represses alternative cell fates like Th2 and Th17. T-bet’s paralog Eomes is less abundantly expressed and Eomes+ CD4+ T cells are mostly found in the context of persistent antigen exposure, like bone marrow transplantation, chronic infection or inflammation as well as malignant disorders. However, it has remained unresolved whether Eomes executes similar transcriptional activities as T-bet in CD4+ T cells. Here we use a novel genetic approach to show that Eomes expression in CD4+ T cells drives a distinct transcriptional program that shows only partial overlap with T-bet. We found that Eomes is sufficient to induce the expression of the immunoregulatory cytokine IL-10 and, together with T-bet, promotes a cytotoxic effector profile, including Prf1, Gzmb, Gzmk, Nkg7 and Ccl5, while repressing alternative cell fates. Our results demonstrate that Eomes+ CD4+ T cells, which are often found in the context of chronic antigen stimulation, are likely to be a unique CD4+ T cell subset that limits inflammation and immunopathology as well as eliminates antigen-presenting and malignant cells

    The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation

    Get PDF
    Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU-NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces

    Loss of DNMT1o Disrupts Imprinted X Chromosome Inactivation and Accentuates Placental Defects in Females

    Get PDF
    The maintenance of key germline derived DNA methylation patterns during preimplantation development depends on stores of DNA cytosine methyltransferase-1o (DNMT1o) provided by the oocyte. Dnmt1omat-/- mouse embryos born to Dnmt1Δ1o/Δ1o female mice lack DNMT1o protein and have disrupted genomic imprinting and associated phenotypic abnormalities. Here, we describe additional female-specific morphological abnormalities and DNA hypomethylation defects outside imprinted loci, restricted to extraembryonic tissue. Compared to male offspring, the placentae of female offspring of Dnmt1Δ1o/Δ1o mothers displayed a higher incidence of genic and intergenic hypomethylation and more frequent and extreme placental dysmorphology. The majority of the affected loci were concentrated on the X chromosome and associated with aberrant biallelic expression, indicating that imprinted X-inactivation was perturbed. Hypomethylation of a key regulatory region of Xite within the X-inactivation center was present in female blastocysts shortly after the absence of methylation maintenance by DNMT1o at the 8-cell stage. The female preponderance of placental DNA hypomethylation associated with maternal DNMT1o deficiency provides evidence of additional roles beyond the maintenance of genomic imprints for DNA methylation events in the preimplantation embryo, including a role in imprinted X chromosome inactivation. © 2013 McGraw et al

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation.

    Get PDF
    The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation
    corecore