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SUMMARY

The intestinal tract is constantly exposed to various
stimuli. Group 3 innate lymphoid cells (ILC3s)
reside in lymphoid organs and in the intestinal tract
and are required for immunity to enteric bacterial
infection. However, the mechanisms that regulate
the ILC3s in vivo remain incompletely defined.
Here, we show that GPR183, a chemotactic
receptor expressed on murine and human ILC3s,
regulates ILC3 migration toward its ligand 7a,25-
dihydroxycholesterol (7a,25-OHC) in vitro, and
GPR183 deficiency in vivo leads to a disorganized
distribution of ILC3s in mesenteric lymph nodes
and decreased ILC3 accumulation in the intestine.
GPR183 functions intrinsically in ILC3s, and
GPR183-deficient mice are more susceptible to
enteric bacterial infection. Together, these results
reveal a role for the GPR183-7a,25-OHC pathway
in regulating the accumulation, distribution, and
anti-microbial and tissue-protective functions of
ILC3s and define a critical role for this pathway in
promoting innate immunity to enteric bacterial
infection.

INTRODUCTION

The intestinal mucosal barrier surface is constantly exposed to

food antigens, beneficial microbes, pathogens, and a multitude

of other environmental stimuli (Turner, 2009). Innate lymphoid

cells (ILCs) are known to contribute to innate and adaptive im-

mune responses against these stimuli and play a critical role in

maintaining barrier function and intestinal homeostasis (Artis

and Spits, 2015; Diefenbach et al., 2014; Eberl et al., 2015;

Klose and Artis, 2016; Spits et al., 2013, 2016). ILCs are

lineage-negative (Lin�), interleukin-7 (IL-7) receptor a-positive
3750 Cell Reports 23, 3750–3758, June 26, 2018 ª 2018 The Authors
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(CD127+), CD90+ innate immune cells that are widely distrib-

uted throughout the body, particularly enriched at the mucosal

barriers (Artis and Spits, 2015; Diefenbach et al., 2014; Eberl

et al., 2015; Klose and Artis, 2016). Group 3 ILCs (ILC3s) ex-

press the transcription factor RORgt and play pivotal roles in

protecting against bacterial, viral, and fungal infections in the

intestine by fortifying the epithelial barrier via rapid secretion

of soluble factors, such as IL-22, lymphotoxin a, and IL-17A,

as well as regulating CD4+ T cell responses toward intestinal

commensal bacteria (Fernandes et al., 2014; Gladiator et al.,

2013; Hepworth et al., 2013, 2015; Kim et al., 2012; Klose

et al., 2013; Satoh-Takayama et al., 2008). ILC3s are enriched

in lymphoid tissues and at mucosal barrier surfaces, such as

the intestinal tract, protecting against hazardous environmental

stimuli together with other immune cells (Artis and Spits, 2015;

Diefenbach et al., 2014; Eberl et al., 2015; Klose and Artis,

2016). Immune cells express various G-protein-coupled recep-

tors (GPRs), including C-C motif chemokine receptors (CCRs),

C-X-C motif chemokine receptors, and other GPRs, such as

GPR183 and sphingosine-1-phosphate receptors, which regu-

late cell migration, accumulation, and distribution in tissues.

Several chemokine receptors have been reported to control

the accumulation of a subset of the ILC3s (Ivanov et al.,

2006; Kim et al., 2015; Mackley et al., 2015; Satoh-Takayama

et al., 2014); however, the molecular mechanisms that regulate

the accumulation, distribution, and function of the entire ILC3

population in lymphoid and mucosal tissues and their effects

on anti-bacterial responses and tissue protection are incom-

pletely defined.

GPR183 (also known as EBI2) is a Gai-coupled seven-

transmembrane chemotactic receptor. It is highly expressed

on follicular B cells, CD4+ dendritic cells (DCs), and CD4+

T cells but is downregulated on germinal center (GC) B cells

in secondary lymphoid organs and controls cell migration

to achieve efficient antibody responses and CD4+ T cell re-

sponses (Gatto et al., 2009, 2013; Li et al., 2016; Pereira

et al., 2009; Yi and Cyster, 2013; Yi et al., 2012). GPR183

ligand, 7a,25-dihydroxycholesterol (7a,25-OHC), is produced
.
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by stromal cells residing in the interfollicular regions of lymph

nodes (LNs) and the bridging channels of the spleen (Hanne-

douche et al., 2011; Liu et al., 2011; Yi et al., 2012). GPR183

expressed on CD4+ ILC3s (also termed as lymphoid tissue

inducer cells [LTis]) controls their migration and the formation

of colonic tertiary lymphoid organs (Emgård et al., 2018). How-

ever, whether GPR183 and 7a,25-OHC control the accumula-

tion, distribution, and tissue-protective function of ILC3s in the

gut-associated lymphoid tissues and in the intestinal lamina

propria (LP) has not been examined.

In this study, we demonstrate that ILC3s isolated from the

mesenteric LNs (mLNs) and intestinal LP express GPR183

and intestinal ILC3s migrate toward 7a,25-OHC in vitro. Quanti-

tative PCR (qPCR) analysis indicated 7a,25-OHC production by

gut stromal cells, and genetic deletion of GPR183 or 7a,25-OHC

resulted in a disorganized accumulation of ILC3s in the subcap-

sular sinus of the mLNs and reduced ILC3 accumulation in the

intestine. The regulation of ILC3 accumulation in the intestine

by GPR183 was ILC3 intrinsic and was required for optimal

IL-22 production and protective immunity against the enteric

bacterium, Citrobacter rodentium (C. rodentium). Taken

together, these data reveal a previously unrecognized role of

the GPR183-7a,25-OHC pathway in regulating ILC3-dependent

immunity to enteric bacterial infection.

RESULTS

GPR183 Is Constitutively Expressed on ILC3s and
Mediates Migration toward 7a,25-OHC
To study the pathways that regulate the distribution and accu-

mulation of ILC3s in lymphoid and mucosal tissues in vivo, we

undertook an unbiased analysis of molecules associated with

these processes by RNA sequencing (RNA-seq). Among the

genes listed in the gene ontology (GO) term ‘‘lymphocyte chemo-

taxis,’’ Gpr183 was the most abundant gene expressed in intes-

tinal LP ILC3s (Figure S1A). To further examine this, we sorted

ILC subsets from intestinal LP cells as well as mLN cells har-

vested from Rorc(gt)Gfp mice and analyzed the expression of

Gpr183 mRNA by quantitative PCR. Consistent with the RNA-

seq data, intestinal CCR6+ ILC3s and CCR6� ILC3s and mLN

ILC3s had high Gpr183 mRNA expression, and the expression

in intestinal CCR6+ ILC3s was higher than in ILC1s and ILC2s

(Figure 1A). To examine GPR183 protein expression, we em-

ployed Gpr183LacZ/+ reporter mice, which were generated by re-

placing the Gpr183 coding region with the LacZ gene, and we

could detect LacZ expression in non-GC B cells, but not in GC

B cells (Figure S1B). We confirmed the LacZ expression in

mLN and small intestinal (SI) ILC3s (Figure 1B; gating strategy

in Figure S1C). We also detected GPR183 protein staining on

CD45+Lin�CD127+CD117+CRTH2� cells, which are ILC3s in hu-

man ileal LP and ILC precursors in peripheral bloodmononuclear

cells (PBMCs) (Lim et al., 2017) from healthy donors (Figures 1C

and 1D; gating strategy in Figure S1D). Collectively, these data

show that murine and human ILC3s express GPR183.

Given that GPR183 is a chemotactic receptor expressed on

follicular B cells, CD4+ T cells, and DCs, mediating their migra-

tion toward the GPR183 ligand 7a,25-OHC (Gatto et al., 2009,

2013; Li et al., 2016; Pereira et al., 2009; Yi and Cyster, 2013;
Yi et al., 2012), we tested whether ILC3s migrate toward

7a,25-OHC in vitro. We performed transwell migration assays

with SILP cells from wild-type (WT) mice and Gpr183�/� mice.

WT ILC3s migrated toward 7a,25-OHC in vitro, whereas

Gpr183�/� ILC3s did not, indicating that GPR183 regulates

ILC3s migration toward 7a,25-OHC (Figure 1E).

CH25H and CYP7B1 Are Expressed in Intestinal Stromal
Cells
Cholesterol 25-hydroxylase (CH25H) and oxysterol 7a-hydroxy-

lase (CYP7B1), which are enzymes required for the biosynthesis

of GPR183 ligand 7a,25-OHC, are highly expressed in spleen

and LN stromal cells (Hannedouche et al., 2011; Liu et al.,

2011; Yi et al., 2012). To determine whether CH25H and

CYP7B1 are also expressed in intestinal stromal cells, we frac-

tionatedmouse SI into epithelial, LP leukocyte (LPL), and stromal

compartments and measured the relative expression of Ch25h

and Cyp7b1 mRNA in each compartment by qPCR. Expression

of Ch25h and Cyp7b1 was higher in the stromal compartment

compared to epithelial and LPL compartments of the SI (Fig-

ure 1F), suggesting 7a,25-OHC production by intestinal stromal

cells. Together with previous reports (Emgård et al., 2018; Yi

et al., 2012), these data indicate that the interaction of GPR183

expressed on ILC3s and 7a,25-OHC produced by stromal cells

in mLNs and the intestine may control the accumulation of

ILC3s in these organs.

GPR183 and 7a,25-OHC Control the Distribution of
ILC3s in mLNs
To examine the effect of GPR183 deficiency on ILC3s at steady

state in vivo, we analyzed ILC3s from WT mice and Gpr183�/�

mice using flow cytometry. Percentages of RORgt+ ILC3s within

the total ILC population (CD45+Lin�CD90+CD127+; refer to the

gating strategy in Figure S2A) were significantly increased in

the mLNs of Gpr183�/� mice, along with increased ILC3

numbers compared to WT mice (Figures 2A and 2B). The fre-

quencies and numbers of NKp46+RORgt� ILC1s and GATA-3+

ILC2s were reduced in Gpr183�/� mice compared to WT mice

(Figures S2B and S2C). Ch25h�/� mice that have defective

7a,25-OHC production (Hannedouche et al., 2011; Liu et al.,

2011) exhibited increased ILC3s, reduced ILC1s, and compara-

ble ILC2s in the mLNs compared to WT mice at steady state

(Figures 2C, 2D, S2D, and S2E).

Previous studies identified that the localization of GPR183-

expressing T cells, B cells, and DCs within lymphoid tissues is

regulated by 7a,25-OHC produced from tissue stromal cells

(Gatto et al., 2009, 2013; Hannedouche et al., 2011; Li et al.,

2016; Liu et al., 2011; Pereira et al., 2009; Yi and Cyster,

2013; Yi et al., 2012). To examine whether GPR183 regulates

the localization of ILC3s in mLNs, we stained mLN sections

from WT mice and Gpr183�/� mice with anti-RORgt, CD3ε,

and CD127 antibodies to visualize ILC3s (Figure 2E). Serial

sections were stained for B220 or MAdCAM-1 to examine the

position of follicles and the subcapsular sinuses (Figures 2F

and 2G). There was no overt difference in the structure of folli-

cles and T cell areas in mLNs from Gpr183�/� mice compared

to WT mice, which is consistent with the previous report

(Pereira et al., 2009). RORgt+CD3ε�CD127+ ILC3s were found
Cell Reports 23, 3750–3758, June 26, 2018 3751



Figure 1. GPR183 Is Expressed on ILC3s

and Regulates ILC3 Migration

(A) qPCR analysis of Gpr183 transcript abundance

in indicated sort-purified cell populations pre-

sented relative to Hprt1. Each symbol represents

sample from one mouse or pooled from 2 or

3 mice. Fo B, follicular B cells; GC B, germinal

center B cells. *p < 0.05 and ****p < 0.0001 by one-

way ANOVA with Dunnett’s multiple comparison.

(B) LacZ staining (conversion of the fluorescent

LacZ substrate fluorescein di-b-D-galactopyrano-

side [FDG]) indicating GPR183 expression on

ILC3s from mLNs and SILP. Data are representa-

tive of 2 independent experiments.

(C) Flow cytometry histograms of anti-GPR183

staining on ILC3s (red line), total ILCs (blue line),

and isotype control staining on total ILCs (shaded

gray) from human terminal ileum. Data are repre-

sentative of 5 donors.

(D) Flow cytometry histograms of anti-GPR183

staining (red line) and isotype control staining

(shaded gray) on ILC precursors from human

PBMCs. Data are representative of 4 donors.

(E) In vitro migration of ILC3s toward 7a,25-OHC.

Data are representative of 2 independent experi-

ments. **p < 0.01.

(F) qPCR analysis of 7a,25-OHC-producing en-

zymes Ch25h and Cyp7b1 transcript abundances

in fractionated SI samples from WT mice, pre-

sented relative to Hprt1. LPL, lamina propria

leukocyte.

Each symbol represents one mouse unless spe-

cifically indicated. Data are mean ± SEM. See also

Figure S1.
predominantly in the interfollicular areas of WT mLN sections,

which is consistent with published results (Hepworth et al.,

2015; Mackley et al., 2015). A significantly higher proportion of

the Gpr183�/� ILC3s were found in the outer regions of the in-

terfollicular areas rather than their normal localization in mLNs

compared to that of the WT ILC3s (Figures 2E–2H; refer to Fig-

ure S2F for the definition of inner and outer regions). Similarly,

staining of mLN sections from WT mice and Ch25h�/� mice

showed more ILC3s localized in the outer regions of the interfol-

licular areas of Ch25h�/� mLNs compared to WT mLNs (Figures

2I, 2J, and S2F). Consistent with the flow cytometry data (Fig-

ures 2A and 2B), more ILC3s were found in the interfollicular

areas in the Gpr183�/� mLNs compared to WT (Figure 2K).

We also examined the Peyer’s patches (PPs) and found

increased ILC3s in the Gpr183�/� PPs compared to WT (Fig-

ure S2G). Immunofluorescent staining of PP sections revealed

accumulation of ILC3s in between the follicle and the T cell

area in the luminal side of Gpr183�/� mice (Figure S2H). Collec-
3752 Cell Reports 23, 3750–3758, June 26, 2018
tively, these results suggest that GPR183

and 7a,25-OHC control the distribution

and accumulation of ILC3s in the

mLNs and PPs. Notably, ILC3s from

Gpr183�/� mice had comparable expres-

sion of CCR7 and CCR9 but significantly

lower expression of integrin a4b7, which
mediates cell trafficking to the intestine (Kim et al., 2015),

compared to ILC3s from WT mice (Figures 2L and S2I).

GPR183 and 7a,25-OHC Regulate ILC3 Accumulation in
the Intestine
Given that GPR183 appears to regulate migration of intestinal

ILC3s (Figure 1E) and expression of gut-tropic integrin expres-

sion (Figure 2L), we analyzed the accumulation of ILC3s in the

SILP of Gpr183�/� mice and WT mice. In contrast to mLNs,

RORgt+ ILC3s, including both the NKp46+ and CCR6+ ILC3 sub-

sets, were significantly reduced in Gpr183�/� SILP compared to

WT at steady state (Figures 3A–3D). As intestinal stromal cells

are potential producers of 7a,25-OHC (Figure 1F; Emgård

et al., 2018), we also examined the SILP of Ch25h�/� mice and

found fewer ILC3s in Ch25h�/� mice compared to WT mice (Fig-

ures 3E–3H). To examine whether GPR183 regulates the locali-

zation of ILC3s in the SI, we crossed Gpr183�/� mice with

Rorc(gt)Gfp mice and stained the SI sections with anti-GFP,



Figure 2. Disorganized ILC3 Distribution in the mLNs of Gpr183�/� and Ch25h�/� Mice

(A andB) Population frequencies (A) and numbers (B) of RORgt+ ILC3s in themLNs ofWT andGpr183�/�mice at steady state, gated onCD45+Lin�CD127+CD90+

cells. Data are representative of 3 independent experiments. **p < 0.01, ***p < 0.001.

(C and D) Population frequencies (C) and numbers (D) of RORgt+ ILC3s in themLNs ofWT andCh25h�/�mice at steady state, gated on CD45+Lin�CD127+CD90+

cells. Data are representative of 3 independent experiments. **p < 0.01, ****p < 0.0001.

(E–G) Representative images of mLN sections ofWT andGpr183�/�mice stained for RORgt, CD127 andDAPI together with CD3ε (E), B220 (F) or MAdCAM-1 (G).

Follicles, or F, are designated by dashed lines. The scale bars represent 50 mm.

(H) Percentages of ILC3s localized in the outer regions over ILC3s localized in the interfollicular areas between follicles in mLN sections of WT and Gpr183�/�

mice. Twenty-three interfollicular areas in 15 mLNs from 3 WT mice and 21 interfollicular areas in 15 mLNs from 3 Gpr183�/� mice were examined. ***p < 0.001.

(I and J) Representative images of ILC3 distribution (I) and percentages of ILC3s localized in the outer regions (J) in mLN sections of WT and Ch25h�/� mice. Ten

interfollicular areas in 10mLNs from 2WTmice and 14 interfollicular areas in 10mLNs from 2Ch25h�/�mice were examined. The scale bars represent 100 mm. In

(J), *p < 0.05.

(K) Numbers of ILC3s in interfollicular areas (inner and outer regions) in mLN sections of WT andGpr183�/�mice. See Figures 2E–2H legend for details. *p < 0.05,

**p < 0.01.

(L) The enumeration of anti-a4b7 geometric mean fluorescence intensity (GMFI) on mLN ILC3s of WT and Gpr183�/� mice. Data are representative of 3 inde-

pendent experiments. *p < 0.05.

Each symbol represents one mouse (A–D and L) or one region (H, J, and K). Data are mean ± SEM. See also Figure S2.
CD3ε, and B220 antibodies (Figure 3I). WT and Gpr183�/�

GFP+CD3ε� ILC3s were similarly scattered in the LP, but

Gpr183�/� mice had fewer cryptopatches (CPs) compared to
WT mice, which is consistent with the flow cytometry data (Fig-

ures 3A, 3B, and 3J). When we analyzed the colon LP at steady

state, the numbers and proportions of ILCs were comparable
Cell Reports 23, 3750–3758, June 26, 2018 3753



Figure 3. Defective ILC3 Accumulation in the SI of Gpr183�/� and Ch25h�/� Mice

(A–D) Population frequencies (A) and numbers (B) of RORgt+ ILC3s and numbers of NKp46+RORgt+ ILC3s (C) and CCR6+RORgt+ ILC3s (D) in the SI of WT and

Gpr183�/� mice at steady state, gated on CD45+Lin�CD127+CD90+ cells. Data are representative of 3 independent experiments. **p < 0.01.

(E–H) Population frequencies (E) and numbers (F) of RORgt+ ILC3s and numbers of NKp46+RORgt+ ILC3s (G) and CCR6+RORgt+ ILC3s (H) in the SI of WT and

Ch25h�/� mice at steady state, gated on CD45+Lin�CD127+CD90+ cells. Data are pooled from 2 experiments. In (E) and (F), *p < 0.05. In (G), **p < 0.01.

(I) Representative images of ILC3 distribution and CPs in SI sections of WT and Gpr183�/� mice. The scale bars represent 500 mm.

(J) Numbers of CPs in SI sections of WT and Gpr183�/� mice. *p < 0.05.

(K) Ratios of CD45.2+ ILC3s to CD45.1+CD45.2+ ILC3s in the SI and mLNs of mixed BM chimera mice with indicated genotypes. Data are representative

of 3 independent experiments. **p < 0.01, ***p < 0.001. See also Figure S3G.

(L) FrequenciesofKi67-expressing ILC3s in theSIofWT:WT (left) andGpr183�/�:WT (right)BMchimeramice.Dataare representativeof 3 independent experiments.

Each symbol represents one mouse. Data are mean ± SEM. See also Figure S3.
between WT and Gpr183�/� mice or Ch25h�/� mice (Figures

S3A–S3D), but Gpr183�/� mice had fewer CPs and isolated

lymphoid follicles in the colon compared to WT mice (Figures

S3E and S3F). Taken together, these results suggest that,

through binding to 7a,25-OHC produced by intestinal stromal

cells, GPR183 promotes the accumulation of ILC3s in the

intestine.
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ILC3-Intrinsic Expression of GPR183 Controls Their
Accumulation in the Intestine and mLNs
To test whether the regulation of ILC3 accumulation in the intes-

tine and mLNs by GPR183 is ILC3-intrinsic, we generated mixed

bone marrow (BM) chimera mice by transferring congenically

labeled WT or Gpr183�/� BM cells (CD45.2+) mixed with WT

BM cells (CD45.1+CD45.2+) into lethally irradiated recipient



mice (CD45.1+). After 8 weeks of reconstitution, we examined

the ratios of WT or Gpr183�/� CD45.2+ cells to internal control

WT CD45.1+CD45.2+ cells within ILC3 populations. Compared

to WT CD45.2+ BM mixed with WT CD45.1+CD45.2+ BM

chimera (WT:WT mice), Gpr183�/� CD45.2+ BM mixed with

WT CD45.1+CD45.2+ BM chimera (Gpr183�/�:WT mice) had

significantly reduced ratios of CD45.2+ ILC3s to

CD45.1+CD45.2+ ILC3s in the SI (Figures 3K and S3G). We

also observed smaller ILC3 percentages in Gpr183�/� CD45.2+

cells compared to that in WT CD45.1+CD45.2+ cells in total SI

ILCs within each Gpr183�/�:WT mice (Figure S3H; 8.3 ± 0.1

versus 13.4 ± 0.9; mean ± SEM; p < 0.01). Meanwhile,

Gpr183�/�:WT mice exhibited significantly increased ratios of

CD45.2+ ILC3s to CD45.1+CD45.2+ ILC3s in the mLNs

compared to WT:WT mice (Figure 3K).

The expression of the proliferation marker Ki67 was compara-

ble in CD45.1+CD45.2+ ILC3s (WT) and CD45.2+ ILC3s (WT or

Gpr183�/�) in both chimeras (Figure 3L). Therefore, GPR183

appears to regulate the accumulation, but not the proliferation,

of ILC3s in the intestine and mLNs in a cell-intrinsic manner.

Moreover, Gpr183�/�:WT mice exhibited increased ratios of

CD45.2+ cells in the ILC1 gate and comparable ratios of ILC2s

compared to WT:WT mice, suggesting that the reduced ILC1s

and ILC2s inGpr183�/�mLNswas secondary to the cell-intrinsic

effect on ILC3s (Figure S3I).

GPR183 Is Required for ILC3-Mediated Protective
Immunity following Enteric Bacterial Infection
ILC3s are critical in promoting innate immunity to C. rodentium

infection through producing IL-22, which triggers the secretion

of anti-microbial peptides from intestinal epithelial cells (Satoh-

Takayama et al., 2008; Sawa et al., 2011; Sonnenberg et al.,

2011; Zheng et al., 2008). Considering that GPR183 deficiency

hampers ILC3 accumulation in the intestine, we sought to test

whether GPR183 regulates ILC3-mediated innate immunity

against C. rodentium infection. Similar to the SI of Gpr183�/�

mice (Figures 3A–3D), percentages and numbers of ILC3s

were significantly reduced in the SI and the colon of

Rag1�/�Gpr183�/� mice compared to Rag1�/� mice at

steady state (Figures S4A–S4D). Numbers of NKp46+ ILC3s

and CCR6+ ILC3s were both significantly reduced in

Rag1�/�Gpr183�/� mice (Figures S4E and S4F). At 8 days after

C. rodentium infection, Rag1�/�Gpr183�/� mice also exhibited

significantly reduced frequencies and numbers of ILC3s in the

SI and the colon compared to Rag1�/� mice (Figures 4A, 4B,

S4G, and S4H). Similar to steady state, numbers of NKp46+

ILC3s and CCR6+ ILC3s in the SI were both significantly reduced

in infected Rag1�/�Gpr183�/� mice compared to Rag1�/� mice

(Figures S4I and S4J). The percentages of Ki67+ cells in intes-

tinal ILC3s were comparable between Rag1�/� mice and

Rag1�/�Gpr183�/� mice, suggesting that the proliferation of

ILC3s during infection is not regulated by GPR183 (Figures 4C

and S4K). We next examined whether the IL-22-producing ca-

pacity of ILC3s was regulated by GPR183 expression. Notably,

both Rag1�/� and Rag1�/�Gpr183�/� ILC3s contained similar

percentages of IL-22+ cells, suggesting that GPR183 deficiency

does not affect the capability of IL-22 production in ILC3s (Fig-

ures 4D, S4L, and S4M). However, numbers of IL-22-producing
ILC3 were significantly reduced inRag1�/�Gpr183�/� compared

to Rag1�/� mice, due to lower total numbers of ILC3 in

Rag1�/�Gpr183�/� mice (Figures 4E and S4N).

In accordance with reduced numbers of IL-22-producing

ILC3s, Rag1�/�Gpr183�/� mice exhibited significantly more

severe colonic crypt hyperplasia, colonic shortening, and

more severe loss of body weight compared to Rag1�/� mice,

indicating impaired ILC3-dependent innate immunity and

tissue protection in Rag1�/�Gpr183�/� mice (Figures 4F–4H).

Lipocalin 2 (Lcn2) mRNA expression was higher in

Rag1�/�Gpr183�/� mice, which is consistent with exacerbated

inflammation compared to Rag1�/� mice (Figure 4I). Moreover,

Rag1�/�Gpr183�/� mice exhibited a reduced survival rate

following infection compared toRag1�/�mice (Figure 4J). Given

the importance of IL-22 in tissue protection following bacterial

infection (Satoh-Takayama et al., 2008; Sawa et al., 2011;

Sonnenberg et al., 2011; Zheng et al., 2008), these results

suggest that GPR183 regulates anti-bacterial responses and

tissue protection through facilitating the accumulation of

IL-22-producing ILC3s in the intestine. Taken together, these

data identify a crosstalk between GPR183-expressing ILC3s

and intestinal stromal cells that express 7a,25-OHC, which

is required for optimal ILC3 responses and host protective

immunity against enteric bacterial infection.

DISCUSSION

Mucosal barriers are constitutively challenged by various stim-

uli, and the homeostasis of mucosal barriers both at steady

state and upon challenge are maintained by tissue-resident im-

mune cells (Kurashima et al., 2013; Okumura and Takeda,

2016). ILC3s are found in lymphoid tissues and are enriched

in the intestine, where they play critical roles in regulating

adaptive immune responses against commensal bacteria, as

well as in innate immunity against enteric bacterial infections

(Hepworth et al., 2013, 2015; Rankin et al., 2016; Satoh-Ta-

kayama et al., 2008; Sawa et al., 2011; Song et al., 2015; Son-

nenberg et al., 2011). Although the mechanisms ILC3s employ

to control infections and promote tissue repair continue to be

defined (Satoh-Takayama et al., 2008; Sawa et al., 2011; Son-

nenberg et al., 2011), our understanding of how the accumula-

tion, distribution, and tissue-protective function of ILC3s in the

intestine and its associated lymphoid organs are controlled re-

mained limited. Emgård et al. (2018) recently reported that

CD4+ LTi-like ILC3s express GPR183 that controls cell migra-

tion and formation of solitary intestinal lymphoid tissues in the

colon and enhances IL-22 production by ILC3s in the colon

at steady state. In the current study, we demonstrate that

GPR183 is expressed on murine and human ILC3s and

that GPR183 and its ligand 7a,25-OHC regulate the accumula-

tion and distribution of ILC3s in lymphoid tissues and the

intestine, and consequently, GPR183 controls ILC3-dependent

innate immunity and tissue protection following enteric

bacterial infection. We also identify GPR183-dependent accu-

mulation of IL-22-producing ILC3s in the intestine following

C. rodentium infection. Of note, enhanced IL-22 production

by ILC3s was not detectable, possibly due to heightened

inflammation elicited by the bacterial infection.
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Figure 4. GPR183 Is Required for ILC3-

Mediated Protection against C. rodentium

Infection

(A–H) Rag1�/� and Rag1�/�Gpr183�/� mice were

infectedwithC. rodentiumandwereanalyzed8 (A–E

and I) and 10 (F–H) days post-infection (d.p.i.).

(A and B) Population frequencies (A) and num-

bers (B) of ILC3s in the colon LP, gated on

CD45+Lin�CD127+CD90+ cells. **p < 0.01, ***p <

0.001.

(C) Frequencies of Ki67-expressing colonic ILC3s.

(D and E) Frequencies (D) and numbers (E) of IL-

22-producing colonic ILC3s following IL-23 re-

stimulation. In (E), *p < 0.05.

(F) Representative H&E staining sections of colon

(left) and enumeration of the crypt length (right).

The scale bars represent 100 mm.

(G–J) Colon length (G), changes in body weight (H),

Lcn2 mRNA expression (I), and survival (J) of

infected Rag1�/� and Rag1�/�Gpr183�/� mice.

Body weight is presented relative to initial weight,

set as 100%. Survival data are pooled from 2 ex-

periments (8 mice per group). *p < 0.05, **p < 0.01.

All data are representative of 2 independent

experiments unless stated. Each symbol repre-

sents one mouse. Data are mean ± SEM. See also

Figure S4.
ILC3s reside in the interfollicular areas of the mLNs, where

they present commensal bacterial antigen through major his-

tocompatibility complex class II and prevent CD4+ T cell-

induced chronic intestinal inflammation toward commensal

bacteria (Hepworth et al., 2015). In this study, we show that

GPR183 controls the distribution of ILC3s in mLNs. GPR183-

deficient ILC3s accumulated in the outer regions of the inter-

follicular areas, which are close to the subcapsular sinuses.

DCs migrate into the LNs via the lymph through subcapsular

sinuses and then move to the paracortex where they interact

with helper T cells (Lian and Luster, 2015). This pathway is
3756 Cell Reports 23, 3750–3758, June 26, 2018
regulated by CCR7, a molecule that

also controls the accumulation of ILC3s

to LNs (Lian and Luster, 2015; Mackley

et al., 2015). Similarly, ILC3s migrate

from other organs, such as the intestine

(Mackley et al., 2015), and enter the

LNs through subcapsular sinuses. In

the context of GPR183 deficiency,

ILC3s cannot migrate into the interfollic-

ular areas because they fail to respond

to the ligand expressed in the inner re-

gions of the interfollicular areas and

hence are sequestered in the subcap-

sular sinuses. As GPR183 plays such

important roles in regulating the distri-

bution and function of ILC3s in both

lymphoid and non-lymphoid tissues,

GPR183 itself and its oxysterol ligand-

producing pathway could be potential

therapeutic targets for controlling and
regulating ILC3 functions in multiple infectious and inflamma-

tory diseases.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in

Supplemental Experimental Procedures.

Mice

C57BL/6 (Jax 664), Gpr183LacZ/+ (Jax 26443), Ch25h�/� (Jax 16263), CD45.1

(Jax 2014), and Rag1�/� (Jax 2216) mice were purchased from The Jackson

Laboratory. Rorc(gt)Gfp was provided by Dr. G. Eberl (Institut Pasteur, France).



Breeding of Gpr183LacZ/+ to homozygosity resulted in Gpr183-deficient

(Gpr183LacZ/LacZ) mice referred to as Gpr183�/� throughout the manuscript.

Sex- and age-matched WT and transgenic mice between 6 and 16 weeks of

age were co-housed and used for experiments. All mice were maintained

under specific pathogen-free conditions and were used in accordance with

the Institutional Animal Care and Use Committee guidelines at Weill Cornell

Medical College.

Isolation and Flow Cytometry Staining of Human ILC3s

Intestinal biopsies from the terminal ileumwere obtained, processed, and viably

cryopreserved as previously described (Hepworth et al., 2013, 2015). Following

thawing, cells were stained for CD3 (UCHT1), CD19 (HIB19), CD11c (S-HCL-3),

CD11b (M1/70), CD14 (M5E2) as lineage markers, and CD45 (HI30), CRTH2

(BM16), CD127 (A019D5), CD117 (104D2), GPR183 (SA313E4), or mouse

immunoglobulin G2a (IgG2a), k (MOPC-173) was used as isotype control.

Dead cells were excluded with the Live/Dead Fixable Aqua Dead Cell Stain

Kit. ILCs were gated as CD45+Lin�CD127+, and ILC3s were gated as

CD45+Lin�CD127+CRTH2�CD117+. PBMCs were isolated from buffy coats

(New York Blood Center) with a Ficoll-Paque PLUS (GE Healthcare) gradient.

All samples were cryopreserved and stored in liquid nitrogen. For staining

ILC precursors from PBMCs, cells were incubated with FcR Blocking Reagent

(Miltenyi Biotec) and subsequently stained for CD3 (UCHT1), CD123 (6H6), CD5

(UCHT2), FcεRI (AER-37), CD11c (S-HCL-3), CD11b (M1/70), CD34 (581), CD14

(HCD14) as lineage markers and CD19 (HIB19), CD45 (HI30), CRTH2 (BM16),

CD94 (DX22), CD127 (A019D5), and CD117 (104D2). For surface receptor

expression analysis, anti-GPR183 (SA313E4) or mouse IgG2a, k isotype

control (MOPC-173) was used. Dead cells were excluded with the Live/Dead

Fixable Aqua Dead Cell Stain Kit. ILC precursors were gated as

CD45+Lin�CD19�CD94�CD127+CRTH2�CD117+. All antibodies were pur-

chased from eBioscience, BioLegend, or BD Bioscience.

Quantification and Statistical Analysis

Statistical tests were performed with Prism (GraphPad). Unless specifically

indicated otherwise, Student’s t tests were used to compare endpoint

means of different groups. Error bars depict the SEM. For the comparison of

Kaplan-Meier survival curves, log rank (mantel-Cox) test was used. *p < 0.05,

**p < 0.01, ***p < 0.001, and ****p < 0.0001.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at https://doi.org/

10.1016/j.celrep.2018.05.099.
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Emgård, J., Kammoun, H., Garcı́a-Cassani, B., Chesné, J., Parigi, S.M.,
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