10 research outputs found
Functional molecular diversity of marine dissolved organic matter is reduced during degradation
Dissolved organic matter (DOM) is a highly diverse mixture of compounds, accounting for one of the world's largest active carbon pools. The surprising recalcitrance of some DOM compounds to bacterial degradation has recently been associated with its diversity. However, little is known about large-scale patterns of marine DOM diversity and its change through degradation, in particular considering the functional diversity of DOM. Here, we analyze the development of marine DOM diversity during degradation in two data sets comprising DOM of very different ages: a three-year mesocosm experiment and highly-resolved field samples from the Atlantic and Southern Ocean. The DOM molecular composition was determined using ultra-high resolution mass spectrometry. We quantify DOM diversity using three conceptually different diversity measures, namely richness of molecular formulas, abundance-based diversity, and functional molecular diversity. Using these measures we find stable molecular richness of DOM with age >1 year, systematic changes in the molecules' abundance distribution with degradation state, and increasing homogeneity with respect to chemical properties for more degraded DOM. Coinciding with differences in sea water density, the spatial field data separated clearly into regions of high and low diversity. The joint application of different diversity measures yields a comprehensive overview on temporal and spatial patterns of molecular diversity, valuable for general conclusions on drivers and consequences of marine DOM diversity
Functional Molecular Diversity of Marine Dissolved Organic Matter Is Reduced during Degradation
Dissolved organic matter (DOM) is a highly diverse mixture of compounds, accounting for one of the world's largest active carbon pools. The surprising recalcitrance of some DOM compounds to bacterial degradation has recently been associated with its diversity. However, little is known about large-scale patterns of marine DOM diversity and its change through degradation, in particular considering the functional diversity of DOM. Here, we analyze the development of marine DOM diversity during degradation in two data sets comprising DOM of very different ages: a three-year mesocosm experiment and highly-resolved field samples from the Atlantic and Southern Ocean. The DOM molecular composition was determined using ultra-high resolution mass spectrometry. We quantify DOM diversity using three conceptually different diversity measures, namely richness of molecular formulas, abundance-based diversity, and functional molecular diversity. Using these measures we find stable molecular richness of DOM with age >1 year, systematic changes in the molecules' abundance distribution with degradation state, and increasing homogeneity with respect to chemical properties for more degraded DOM. Coinciding with differences in sea water density, the spatial field data separated clearly into regions of high and low diversity. The joint application of different diversity measures yields a comprehensive overview on temporal and spatial patterns of molecular diversity, valuable for general conclusions on drivers and consequences of marine DOM diversity
Morphological Homogeneity of Neurons: Searching for Outlier Neuronal Cells
We report a morphology-based approach for the automatic identification of outlier neurons, as well as its application to the NeuroMorpho.org database, with more than 5,000 neurons. Each neuron in a given analysis is represented by a feature vector composed of 20 measurements, which are then projected into a two-dimensional space by applying principal component analysis. Bivariate kernel density estimation is then used to obtain the probability distribution for the group of cells, so that the cells with highest probabilities are understood as archetypes while those with the smallest probabilities are classified as outliers. The potential of the methodology is illustrated in several cases involving uniform cell types as well as cell types for specific animal species. The results provide insights regarding the distribution of cells, yielding single and multi-variate clusters, and they suggest that outlier cells tend to be more planar and tortuous. The proposed methodology can be used in several situations involving one or more categories of cells, as well as for detection of new categories and possible artifacts.FAPESP [05/00587-5, 2010/01994-1, 2010/16310-0]FAPESPCNPqCNPq [301303/06-1, 573583/2008-0]EPSRCEPSRC [EP/G03950X/1, EP/E002331/1]CARMEN e-science Neuroinformatics projectCARMEN escience Neuroinformatics projectWCU program of the National Research Foundation of KoreaWCU program of the National Research Foundation of KoreaMinistry of Education, Science and Technology [R32-10142]Ministry of Education, Science and Technolog
Forschungsdatenmanagementkonzept für die deutsche Meeresforschung
Die deutsche Meeresforschung benötigt ein kollaboratives "Datenökosystem": Eine gemeinsam nutzbare, verteilte, leistungsstarke und stetig betriebene Forschungsdateninfrastruktur, um Information und Wissen zu sichern und Forschungsdaten für Nutzer*innen aus Wissenschaft, Behörden, Wirtschaft und Öffentlichkeit frei zugänglich zu machen. Eines der zentralen Ziele dieses Konzeptes besteht darin, die Vereinbarung zur
Verknüpfung bewährter Forschungsdateninfrastrukturen einzelner DAM-Mitgliedseinrichtungen, zur Öffnung für die gesamte Deutsche Meeresforschung und zu einem gemeinsamen Betriebskonzept zu treffen. Dafür sollten sich die DAM-Mitgliedseinrichtungen auf ein Konzept verständigen, das ihre institutionelle Souveränität im Umgang mit Forschungsdaten wahrt und gleichzeitig auf die Vereinheitlichung von Prozessen und Mindeststandards hinwirkt
DAM-Forschungsdatenleitlinie
<p>Das vorliegende Dokument richtet sich an alle Mitarbeiter*innen von Mitgliedseinrichtungen der Deutschen Allianz Meeresforschung (DAM), die im Rahmen von DAM-Aktivitäten Daten generiert haben, generieren und/oder mit ihnen arbeiten. Diese Leitlinie ist auch für Beteiligte an DAM-Aktivitäten gültig, die nicht einer DAM-Mitgliedseinrichtung angehören. Das Ziel dieser Leitlinie ist eine Harmonisierung des Umgangs mit Forschungsdaten innerhalb der DAM-Mitgliedseinrichtungen und im Rahmen der DAM-Forschungsmissionen im Kontext der Digitalstrategie der Bundesregierung, der Allianzinitiative und der Helmholtz-Gemeinschaft zu erreichen. Die Leitlinie soll die FAIRness (Auffindbarkeit, Zugänglichkeit, Interoperabilität und Nachnutzbarkeit) und Qualität der erhobenen Forschungsdaten sichern. Sie soll zur Bildung fachspezifischer Verfahrensweisen und Standards in den verschiedenen Forschungsfeldern beitragen, um den Anforderungen der nationalen und<br>
internationalen Publikationsorgane und Forschungsförderer sowie der Nationalen Forschungsdateninfrastruktur (NFDI) zu entsprechen.<br>
Durch die Umsetzung der vorgelegten Leitlinie soll Wissenschaftler*innen der DAM-Mitgliedseinrichtungen langfristig die Arbeit erleichtert werden, indem die notwendigen Rahmenbedingungen für ein nachhaltiges Forschungsdatenmanagement durch die DAM unterstützt werden.</p>