13 research outputs found

    Microarray analysis of GFP-expressing mouse Dopamine neurons isolated by laser capture microdissection

    Get PDF
    The Central Nervous System (CNS) contains an enormous variety of cell types which organize in complex networks. The lack of adequate markers to discern unequivocally among this cellular heterogeneity make the task of dissecting out such neural networks and the cells that comprise them very challenging. The present study represents a \u201cbottom-up\u201d approach that entails a description of A9 and A10 nuclei, which are components of the mesencephalic dopaminergic system, and the identification of their molecular make-up through microarray analysis of their gene expression profiles. These mesencephalic dopaminergic nuclei give rise to the mesocortical and mesostriatal projections and are well known for their roles in initiation of movement, reward behaviour and neurobiology of addiction. Moreover, in post mortem brains of Parkinson Disease patients a specific topographic pattern of degeneration of these neurons, also recapitulated in experimental animal models, is noted, with A9 neurons presenting with a higher vulnerability to degeneration with respect to A10 cells among which, neuron loss is almost negligible. Molecular differences may be at the basis of this different susceptibility. In this study we have optimized a protocol for laser-assisted microdissection of fluorescent-expressing cells and have taken advantage of a line of transgenic mice TH-GFP/21-31, which express GFP under the TH promoter in all CA cells, to guide laser capture microdissection of A9 and A10 mDA neurons for differential informative cDNA microarray profiling. Results show that our optimized method retains the GFP-fluorescence of DA cells and achieves good tissue morphology visualization. Moreover, RNA of high quality and good reproducibility of hybridizations support the validity of the protocol. Many of the genes that resulted differentially expressed from this analysis were found to be genes previously known to specifically define the different identities of the two DA neuronal nuclei. Transcripts were verified for expression, in DA neurons, using the collection of in situ hybridization in the Allen Brain Atlas. We have identified 592 differentially expressed transcripts (less than 8%) of which 242 showing higher expression in A9 and 350 showing higher expression in A10. Categorical analysis showed that transcripts associated with mitochondria and energy production were enriched in A9, while transcripts involved in redox homeostasis and stress response resulted enriched in A10. Of all the differentially expressed genes, eight transcripts (Mif, Hnt, Ndufa10, Aurka, Cs, enriched in A9 neurons and Pdia5, Whrn, and Gpx3 enriched in A10 neurons), verified with the Allen Brain Atlas and not noted or confirmed as differentially expressed before, emerged from this analysis. These and other selected genes are discussed

    Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules

    Get PDF
    BACKGROUND: The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson's disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. RESULTS: By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. CONCLUSIONS: Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease

    Blood transcriptomics of drug-na\uefve sporadic Parkinson's disease patients

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder that is clinically defined in terms of motor symptoms. These are preceded by prodromal non-motor manifestations that prove the systemic nature of the disease. Identifying genes and pathways altered in living patients provide new information on the diagnosis and pathogenesis of sporadic PD. METHODS: Changes in gene expression in the blood of 40 sporadic PD patients and 20 healthy controls ("Discovery set") were analyzed by taking advantage of the Affymetrix platform. Patients were at the onset of motor symptoms and before initiating any pharmacological treatment. Data analysis was performed by applying Ranking-Principal Component Analysis, PUMA and Significance Analysis of Microarrays. Functional annotations were assigned using GO, DAVID, GSEA to unveil significant enriched biological processes in the differentially expressed genes. The expressions of selected genes were validated using RT-qPCR and samples from an independent cohort of 12 patients and controls ("Validation set"). RESULTS: Gene expression profiling of blood samples discriminates PD patients from healthy controls and identifies differentially expressed genes in blood. The majority of these are also present in dopaminergic neurons of the Substantia Nigra, the key site of neurodegeneration. Together with neuronal apoptosis, lymphocyte activation and mitochondrial dysfunction, already found in previous analysis of PD blood and post-mortem brains, we unveiled transcriptome changes enriched in biological terms related to epigenetic modifications including chromatin remodeling and methylation. Candidate transcripts as CBX5, TCF3, MAN1C1 and DOCK10 were validated by RT-qPCR. CONCLUSIONS: Our data support the use of blood transcriptomics to study neurodegenerative diseases. It identifies changes in crucial components of chromatin remodeling and methylation machineries as early events in sporadic PD suggesting epigenetics as target for therapeutic intervention

    Differential spatio-temporal expression of alpha-dystrobrevin-1 during mouse development

    No full text
    Dystrobrevins are a family of dystrophin-related and dystrophin-associated proteins. α-dystrobrevin-1 knockout mice suffer from skeletal and cardiac myopathies. It has been suggested that the pathology is caused by the loss of signalling functions but the exact role of dystrobrevins is largely unknown. We have analysed the spatial and temporal expression of α-dystrobrevin-1 during mouse embryogenesis and found striking developmental regulation and distribution patterns. During development this protein was expressed not only in muscle but also in the CNS, sensory organs, epithelia and skeleton. Particularly interesting was the correlation of α-dystrobrevin-1 expression with the induction of various differentiation processes in the developing eye, inner ear, pituitary, blood-brain barrier, stomach epithelium and areas of the brain, dorsal root ganglia and spinal cord. In contrast, this specific expression at the induction phase decreased/disappeared at later stages of development

    Aβ species removal after Aβ42 immunization

    No full text
    Neuropathologic examination of 3 patients with Alzheimer disease in the Elan Pharmaceuticals trial using antibodies specific for different Aβ species showed in one case, 4 months after the immunization, evidence of a stage of active plaque clearance with "moth-eaten" plaques and abundant Aβ phagocytosis by microglia. At 1 to 2 years after immunization, 2 cases showed extensive areas cleared of plaques (69% and 86% of the temporal cortex was plaque-free). Cortex cleared of plaques in all 3 cases had a characteristic constellation of features, including a very low plaque burden, sparse residual dense plaque cores, and phagocytosed Aβ within microglia. There was resolution of tau-containing dystrophic neurites, although other features of tau pathology (tangles and neuropil threads) remained and cerebral amyloid angiopathy persisted. Although most antibodies generated by Aβ42 immunization in humans bind the intact N-terminus, immunohistochemistry with specific antibodies showed clearance of all major species of Aβ (Aβ40, Aβ42, and N-terminus truncated Aβ). Aβ immunotherapy can clear all Aβ species from the cortex. However, if it is to be used for treatment of established Alzheimer disease, then the residual tau pathology and cerebral amyloid angiopathy require further study.</p

    Promoter architecture of mouse olfactory receptor genes

    Get PDF
    Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice

    Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells

    No full text
    The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the substantia nigra (SN) (A9 neurons) and the ventral tegmental area (VTA) (A10 cells). A9 neurons form the nigrostriatal pathway and are involved in regulating voluntary movements and postural reflexes. Their selective degeneration leads to Parkinson's disease. Here, we report that gene expression analysis of A9 dopaminergic neurons (DA) identifies transcripts for α- and β-chains of hemoglobin (Hb). Globin immunoreactivity decorates the majority of A9 DA, a subpopulation of cortical and hippocampal astrocytes and mature oligodendrocytes. This pattern of expression was confirmed in different mouse strains and in rat and human. We show that Hb is expressed in the SN of human postmortem brain. By microarray analysis of dopaminergic cell lines overexpressing α- and β-globin chains, changes in genes involved in O2 homeostasis and oxidative phopshorylation were observed, linking Hb expression to mitochondrial function. Our data suggest that the most famed oxygen-carrying globin is not exclusively restricted to the blood, but it may play a role in the normal physiology of the brain and neurodegenerative diseases

    Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells

    No full text
    The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the substantia nigra (SN) (A9 neurons) and the ventral tegmental area (VTA) (A10 cells). A9 neurons form the nigrostriatal pathway and are involved in regulating voluntary movements and postural reflexes. Their selective degeneration leads to Parkinson's disease. Here, we report that gene expression analysis of A9 dopaminergic neurons (DA) identifies transcripts for alpha- and beta-chains of hemoglobin (Hb). Globin immunoreactivity decorates the majority of A9 DA, a subpopulation of cortical and hippocampal astrocytes and mature oligodendrocytes. This pattern of expression was confirmed in different mouse strains and in rat and human. We show that Hb is expressed in the SN of human postmortem brain. By microarray analysis of dopaminergic cell lines overexpressing alpha- and beta-globin chains, changes in genes involved in O(2) homeostasis and oxidative phopshorylation were observed, linking Hb expression to mitochondrial function. Our data suggest that the most famed oxygen-carrying globin is not exclusively restricted to the blood, but it may play a role in the normal physiology of the brain and neurodegenerative diseases
    corecore