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Abstract

Background: Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder that is clinically defined
in terms of motor symptoms. These are preceded by prodromal non-motor manifestations that prove the systemic
nature of the disease. Identifying genes and pathways altered in living patients provide new information on the
diagnosis and pathogenesis of sporadic PD.

Methods: Changes in gene expression in the blood of 40 sporadic PD patients and 20 healthy controls ("Discovery
set") were analyzed by taking advantage of the Affymetrix platform. Patients were at the onset of motor symptoms
and before initiating any pharmacological treatment. Data analysis was performed by applying Ranking-Principal
Component Analysis, PUMA and Significance Analysis of Microarrays. Functional annotations were assigned using
GO, DAVID, GSEA to unveil significant enriched biological processes in the differentially expressed genes. The
expressions of selected genes were validated using RT-qPCR and samples from an independent cohort of 12
patients and controls ("Validation set").

Results: Gene expression profiling of blood samples discriminates PD patients from healthy controls and identifies
differentially expressed genes in blood. The majority of these are also present in dopaminergic neurons of the
Substantia Nigra, the key site of neurodegeneration. Together with neuronal apoptosis, lymphocyte activation and
mitochondrial dysfunction, already found in previous analysis of PD blood and post-mortem brains, we unveiled
transcriptome changes enriched in biological terms related to epigenetic modifications including chromatin
remodeling and methylation. Candidate transcripts as CBX5, TCF3, MAN1C1 and DOCK10 were validated by RT-qPCR.

Conclusions: Our data support the use of blood transcriptomics to study neurodegenerative diseases. It identifies
changes in crucial components of chromatin remodeling and methylation machineries as early events in sporadic PD
suggesting epigenetics as target for therapeutic intervention.
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Background
Parkinson’s disease (PD) is a slowly progressive degen-
erative disorder of the central nervous system (CNS)
that is classically defined in terms of motor symptoms
consequent to degeneration of specific subsets of mesen-
cephalic dopaminergic (DA) cells within Substantia
Nigra (SN) pars compacta. Although DA drugs are ef-
fective in alleviating motor symptoms in PD patients, no

pharmacological treatment is currently available to slow
or arrest the neurodegenerative process. Furthermore,
accurate early diagnosis suffers from the lack of reliable
biomarkers. This is due at least in part to three chal-
lenges. First, at the onset of the motor symptoms, dopa-
mine depletion in the putamen is 80 %, with 60 % of the
SN DA neurons already lost [1], proving that at the time
of clinical trials neuronal networks are already largely
compromised. Moreover, PD is not a homogeneous dis-
ease since it presents a plethora of different clinical
forms with unclear molecular differences and conse-
quences on the treatment of choice. Finally, the aetiology
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and the initial molecular events of the disease remain
unknown since the injured tissue in living patients is not
accessible to genomics and biochemical analysis.
PD presents a variety of neuropsychiatric, autonomic,

sensory, and sleep disorders that may precede the ex-
pression of motor disturbances by more than a decade
suggesting that PD is a systemic disease [2]. In this con-
text, a long and intriguing list of alterations of blood
physiology has been described in PD patients [3].
Gene expression profiles represent a powerful tool to

study the molecular basis of a systemic disease in living
patients. Many proof − of − concept studies have been re-
ported to use them as surrogates for disease prediction
and classification [4]. Recently, gene expression analysis
has identified changes in blood correlated to neurode-
generation in PD [5–11]. However, some of these works
suffer the variability derived from enrolling patients in
different stages of the disease and from the unknown
effects of pharmacological treatments.
Here we present the largest study to date of sporadic PD

patients at the early stage of the disease (de novo) and be-
fore any specific pharmacological treatment (drug-naïve)
to perform gene expression profiling using Affymetrix mi-
croarrays on peripheral blood samples.
We show early changes in genes and pathways that

provide new candidates on the quest for peripheral bio-
markers of PD for diagnosis and patients’ classification.
Furthermore, we confirm differences in expression for
biological pathways and selected genes previously identi-
fied in both PD blood and post-mortem brains increasing
their significance as peripheral biomarkers. Together
with the expected alteration in biological terms compris-
ing neuronal apoptosis, mitochondrial dysfunction and
inflammation, we have also found enrichment in genes
involved in chromatin remodeling suggesting new
strategies for pharmacological intervention.

Methods
Subjects
The study was approved by the Ethical Committee at
the Movement Disorders Center of the Neurology
Clinic, Azienda Ospedaliero-Universitaria Ospedali
Riuniti, Trieste, Italy. Study participants gave written in-
formed consent. During a two-year period we enrolled
52 patients with a first clinical diagnosis of PD, accord-
ing to the UK Parkinson’s Disease Society Brain Bank
criteria. Thirty-two healthy age- and ethnicity-matched
control subjects (HC) were also included in the study.
The “Discovery set” of the experiment included 40 PD
patients (68.8 years ± 6.9 SD) and 20 HC (60.3 years ±
5.7 SD). Subjects of the “Validation set” included 12 PD
(68.8 years ± 5.2 SD) and 12 HC (68.0 years ± 1.5 SD)
volunteers. The demographic, clinical and haemato-
logical characteristics of the two study groups are shown

in Table 1. De novo and drug-naïve PD patients were the
selected cohort of this study. While both sustained de-
nervation at the nigrostriatal dopaminergic axis, treatment
with levodopa or dopamine agonist might interfere with
different central neurotransmitter pathways influencing
gene expression profiles. Therefore enrolled subjects did
not take any centrally acting drugs in the previous
6 months. Although no genetic testing was performed,
any family history of PD was determined by self-report
and review of medical records if available was used as an
exclusion criterion in order to minimize the inclusion of
genetic forms of the disease. Inclusion criteria for HCs
were no personal or familiar history of any neurological
and psychiatric disorder.

Clinical assessment
Data referring to detailed history of the disease symp-
toms, co-morbid conditions, previous drug intake, and
any evidence of family history of neurological diseases
were collected. After a standardized neurological exam-
ination, Parkinsonian symptomatology was assessed by
the motor subsection of the Unified Parkinson’s Disease
Rating Scale, UPDRS-motor part [12], and the Hoehn
and Yahr staging scale [13]. Patients’ cognition was
assessed by the Mini-Mental State Examination (MMSE)
[14]. Patients also underwent brain Computed Tomog-
raphy and Magnetic Resonance Image scanning and
Single Photon Emission Computed Tomography (SPECT)
imaging with the pre-synaptic DA ligand 123I-2β-carbome-
toxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane
(123I-FP-CIT) to assess the loss of nigrostriatal terminals
and to gain a functional picture of the progression of the
degenerative process within nigral DA neurons. SPECT
images were classified as normal (symmetric bilateral
uptake of the basal ganglia regions) or abnormal by visual
inspection of an experienced Nuclear Medicine Specialist.
Abnormal scans were graded as follow: asymmetric
uptake with normal or almost normal putamen activ-
ity in one hemisphere and more marked changes on
the other side (type 1); greatly reduced uptake in the
putamen on both the right and left sides (type 2);
very low uptake in the basal ganglia regions with in-
creased specific background signal (type 3) [15].

Blood collection, RNA purification and microarray processing
Blood samples were harvested directly and sequentially
into 8 PAXgene Blood RNA tubes (PreAnalytiX, Hom-
brechtikon, CH) via a 21 − gauge butterfly needle and
then frozen and kept at −80 °C. Total RNA was purified
using PAXgene™ Blood RNA kit (PreAnalytiX GmbH,
Qiagen, Hilden, Germany) and DNaseI treatment was
performed by ‘on-column’ treatment as recommended
by manufacturer’s instructions plus a second treatment
subsequent to elution. RNA was then purified using
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RNeasy (Qiagen, Hilden, Germany) and quantified by
NanoDrop ND-100 Spectrophotometer (NanoDrop-
Technologies; Wilmington, DE). RNA integrity was deter-
mined with 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA) and exclusively samples with RIN ≥ 8 were
included in the subsequent investigations. Hybridization
targets were synthesized with Ovation™ Whole Blood So-
lution (NuGEN) after comparison with other 2 methods
(Additional file 1) and hybridized to HG −U133A 2.0
arrays (Affymetrix, Santa Clara, CA), investigating the
expression of 18400 transcripts.

Data analysis
Principal Component Analysis (PCA) [16] was employed
to reduce the dimensionality of the dataset before the ap-
plication of classification methods. Partial Least Square
Discriminant Analysis (PLS-DA) [17] was applied for clas-
sification purposes to obtain a first selection of the discrim-
inating variables by using a binary coded Y variable (−1 for
control samples and +1 for pathological samples). A pre-
liminary application of PLS-DA reduced the number of
relevant variables to 1612. Only classification models with
a maximum of 6 Principal Component (PCs) were

Table 1 Demographics, clinical phenotypes and haematological values for de novo and drug-naïve PD patients and healthy controls

Diagnostic group Parkinson’s disease Controls

Discovery set Validation set Discovery set Validation set

Number 40 12 20 12

Gender (Male/Female), number 22/18 6/6 10/10 5/7

Age, yr, mean (SD; range) 68.83 (6.94; 51–78) 68.82 (5.22; 59–76) 60.30 (5.69; 53–69) 68.00 (1.5; 65–71)

Age at symptoms onset, yr, mean (SD; range) 67.65 (6.80; 50–76) 67.63 (5.05; 58–74) NA NA

Symptom duration, yr, mean (SD; range) 1.14 (0.66; 0.5–3) 1.49 (0.85; 0.5–3) NA NA

Clinical phenotype at enrollment:

Unilateral symptoms, number (%) 24 (60) 10 (83.3) NA NA

Bilateral symptoms, number (%) 16 (40) 2 (16.7) NA NA

Tremor, number (%) 7 (17.5) 3 (25.0) NA NA

Bradykinesia/rigidity, number (%) 10 (25.0) 3 (25.0) NA NA

Mixed, number (%) 23 (57.5) 6 (50.0) NA NA

Hoehn and Yahr stage, mean (SD; range) 1.45 (0.55; 1–2) 1.50 (0.71; 1–3) NA NA

UPDRS motor score, mean (SD; range) 14.72 (8.15; 3–29) 13.82 (7.22; 1–24) NA NA

MMSE score, mean (SD; range) 29.77 (0.48; 29–30) 29.73 (0.90; 27–30) NA NA
123I-FP-CIT SPECT abnormality:

Type 1, number (%) 21 (55.3) 6 NA NA

Type 2, number (%) 17 (44.7) 5 NA NA

Not executed, number 2 1 NA NA

Haematological values (mean, SD):

White blood cells [10A3/^L] 6.19 (1.58) 4.97 (1.47) 5.76 (1.24) 5.78 (1.09)

Neutrophils (%) 61.67 (8.18) 59.35 (14.64) 57.52 (6.18) 57.74 (5.85)

Lymphocytes (%) 27.85 (7.49) 28.92 (2.72) 31.31 (6.52) 30.63 (6.21)

Monocytes (%) 7.40 (1.73) 8.50 (2.72) 7.38 (1.74) 8.73 (2.42)

Eosinophils (%) 2.62 (1.52) 2.60 (1.89) 3.17 (1.81) 2.42 (1.24)

Basophils (%) 0.49 (0.16) 0.67 (0.36) 0.63 (0.26) 0.63 (0.20)

Red blood cells [10A6/^L] 4.59 (0.49) 4.44 (0.55) 4.79 (0.44) 4.74 (0.44)

Hemoglobin [g/dL] 14.40 (1.23) 14.28 (1.49)) 14.14 (0.88) 14.85 (0.52)

MCV fL] 91.44 (4.61) 94.05 (3.03) 88.56 (4.54) 94.13 (5.37)

MCH [pg] 31.53 (2.42) 32.35 (1.47) 30.16 (1.77) 32.08 (2.10)

MCHC [g/dl] 34.46 (1.22) 34.37 (0.59) 34.05 (0.76) 34.05 (0.51)

Platelet count [10A3/^L] 226.71 (66.72) 176.33 (14.87) 221.60 (43.62) 226.92 (78.05)

NA not applicable, Yr year, UPDRS Unified Parkinson’s Disease Rating Scale, MMSE Mini-Mental State Examination
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considered (Additional file 2). Ranking-Principal Compo-
nent Analysis (R-PCA) [18] ranked variables according to
their decreasing discriminant ability. Linear Discriminant
Analysis (LDA) [19], a Bayesian classification method, pro-
vided the classification of the samples considering the
multivariate structure of the data. Here, a Forward Selec-
tion procedure [19] was applied to the principal compo-
nents. The classification performance of the models was
evaluated by the non-error rate (NER%), namely the per-
centage of overall correct assignments. Further data pro-
cessing was performed in the R computing environment
(http://www.r-project.org/) version 2.8.0 with BioConduc-
tor packages (http://www.bioconductor.org/). Data were
first filtered by eliminating probes with detection call of
poor quality as well as those with intensity value lower
than log2100 for all the samples. Of the original 60 sam-
ples, one (a control samples) did not pass the microarray
hybridization quality controls and was excluded from fur-
ther analyses. Therefore, the final dataset consisted of 59
samples described by 15137 probes.
Robust Multi-Array Average (RMA) normalization

was applied to microarray data and these were imported
in the Multiexperiment Viewer (MeV) software version
4.5.1 for Windows XP (http://www.tm4.org/mev.html).
Statistical analysis was performed with PUMA [20],
SAM (Significance Analysis of Microarrays) [21] and
Rank Product (RP) modules [22] to detect significantly
differentially expressed genes.
PUMA is a Bayesian method (available in R BioCon-

ductor) that includes probe-level measurement error
into the estimates of expression profile [20]. These were
normalized through a median global array scaling, and a
single expression value for each condition was combined
from the replicates and associated to a probability of
positive log ratio (PPLR) between conditions. In order to
facilitate the interpretation of results, PPLR was con-
verted in a p-value-like form: 1-PPLR was used for up-
regulated genes while PPLR for down-regulated ones.
SAM was chosen for its power to allow the control of
false positive results (False Discovery Rate or FDR). This
is particularly relevant when looking at human samples
because of the inherent rate of genetic variation among
individuals. Data were filtered so that only probe sets
that had a Present call and intensity value of >100 in at
least half the arrays of the smaller group were retained.
Functional analyses were performed using Gene Ontol-

ogy (GO) annotations [23], DAVID Bioinformatics Re-
sources [24] and Gene Set Enrichment Analysis (GSEA)
[25] as implemented at http://www.broadinstitute.org/
gsea/, version 2.06.

Quantitative real-time PCR (RT-qPCR)
Total RNA was reverse-transcribed using Superscript III
Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA),

25 ng random hexamers and 2.5 μM oligo (dT) 20
primers according to the manufacturer’s recommenda-
tions. Real-time PCR was performed in the presence of
1.25 μL of cDNA template, TaqMan® gene expression
master mix and commercially available TaqMan® gene
expression assays. It was run on ABI Prism® 7900HT Se-
quence Detection System (Applied Biosystems, Foster
City, CA, USA). TaqMan® assays were: CBX5 (Hs0112
7577_m1), TCF3 (Hs00413032_m1), DOCK10 (Hs0039
1515_m1), MAN1C1 (Hs00220595_m1), ALDH1A1 (Hs
00946916_m1), HSPA8 (Hs03044880_gH), PSMC4 (Hs0
0197826_m1), HIP2 (Hs00193507_m1), SKP1 (Hs00
749532_s1), PGK1 (Hs99999906_m1) and UBC (Hs00
824723_m1). Thermal cycler conditions were as follows:
50 °C for 2 min and 95 °C for 10 min, followed by 40 -
cycles of amplification at 95 °C for 15 s and 60 °C for
1 min. Amplification efficiencies were higher than 90 %
for each primer set. Reactions were run in duplicate and
a replica was performed. Negative controls, such as non-
templates wells as negative reverse transcriptase controls,
were assembled to rule out respectively DNA cross
contamination of the reagents and genomic DNA in the
samples. The amplified products were separated on a 2 %
agarose gel and visualized with ethidium bromide staining.
To identify the best candidate genes as endogenous con-
trols for normalization, 8 PD and 8 HC age-matched per-
ipheral blood samples were analyzed using the TaqMan®
array human endogenous control Cards (Applied Biosys-
tems, Foster City, CA, USA). As the best reference genes,
PGK1 and UBC were similarly selected by geNorm and
Normfinder applications. The relative gene expression was
evaluated by normalization to the geometric mean of the 2
selected endogenous controls and a pool of HC samples
was used as calibrator. Statistical analysis relied on Qbase
plus software (SPSS Ltd., UK) and graphs were generated
with Graphpad Prism 6.0 (Graphpad Software Inc, USA).

Availability of supporting data
Microarray data sets are available in the Gene Expres-
sion Omnibus (GEO; http://www.ncbi.nlm.nih.gov/pro-
jects/geo/) with Accession Number GSE72267. Suppor
ting data (Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13 and 14) are included in the article.

Results
Study design
Here we aim to identify gene expression patterns in per-
ipheral blood of de novo and drug-naïve PD patients by
comparing 40 sporadic PD versus 20 HCs (“Discovery
set”). To this purpose, patients were enrolled at the early
clinical stage of the disease as evaluated by a neurologist.
Subjects did not take any centrally acting drugs in the pre-
vious 6 months. Table 1 shows the demographic and clin-
ical characteristics of all enrolled subjects. As expected,
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most patients showed a prevalent asymmetric parkinson-
ian symptomatology that, in the majority of cases, com-
prised the classical triad of tremor, bradykinesia, and
rigidity. Accordingly, an asymmetric reduction of striatal
activity on the 123I-FP-CIT SPECT images was observed.
The prevalent case consisted of a putaminal alteration
contralateral to the clinical most affected side.
Experiments were carried out aiming to optimize the

protocol for blood transcriptomics to satisfy the required
criteria for biomarker discovery [4]. Special attention
was devoted to assess the effects on gene expression pro-
files of patient’s physiological status at the time of collec-
tion and of storage conditions of biological samples (data
not shown). After comparing three methods for the syn-
thesis of microarray hybridization targets, the OvationTM

Whole Blood Solution (NuGEN) was chosen for its high
sensitivity (three times increase in Present call) and robust
reproducibility (Additional file 1). Blood was collected from
study subjects into PAXgene Blood RNA tubes (PreAn-
alytiX, Hombrechtikon, CH) after a fasting period and at
the same time of the day to limit circadian-dependent vari-
ability. Furthermore, hematological values were determi-
nated to exclude any significant difference among blood
cell types that could affect RNA composition. Total RNA
was purified using PAXgeneTM Blood RNA kit (PreAn-
alytiX GmbH, Qiagen, Hilden, Germany) and underwent
two DNaseI digestion steps. Only high quality RNAs (RNA
Integrity Number or RIN ≥ 8) were included in the study
as determined with 2100 Bioanalyzer (Agilent Technolo-
gies, Palo Alto, CA). Hybridization targets were synthe-
sized with Ovation™ Whole Blood Solution (NuGEN) and
hybridized to HG −U133A 2.0 arrays (Affymetrix, Santa
Clara, CA), investigating the expression of 18400 tran-
scripts. For details, see Material and methods.

A gene panel discriminates PD patients from HCs
A statistical analysis was carried out to identify a gene
panel able to discriminate between patients and controls.
To this purpose we took advantage of R-PCA [18] to se-
lect the most discriminant variables followed by LDA to
obtain the best classification model with a maximum of
6 PCs (Additional file 2). Thus 395 variables were se-
lected (Additional file 3) and a model including five
highly significant PCs (p-levels < 0.01) (PC2, PC6, PC3,
PC5, PC1) correctly classified all the samples (Fig. 1a). The
squared Mahalanobis distance (Additional file 4) of each
sample from the centroid of its own and of the other class
showed that the classification performance was very ro-
bust, the only exception being sample P041BB01 charac-
terized by similar distances from the two classes.
We then analyzed the set of 395 variables, identified

by 466 probes, for biological processes significantly
enriched in the panel. As shown in Fig. 1b and in Add-
itional file 5, processes such as “regulation of apoptosis”,

“lymphocyte activation”, “leukocyte activation” and “lipid
biosynthetic process” were found. These expected find-
ings were already previously associated to PD in blood
and post-mortem brains confirming the experimental
and bioinformatic pipeline. Moreover, we originally iden-
tified several GO terms associated to epigenetic remod-
eling including “chromatin assembly or disassembly”
(GO:0006333).

Differential gene expression analyses of blood samples of
drug-naïve sporadic PD patients
To identify differentially expressed genes between spor-
adic PD patients and controls, analysis of gene expres-
sion profiles was performed with different bioinformatics
algorithms. First, we applied a recently introduced prob-
abilistic model (PUMA) [20] to estimate fold changes
and their significance for each probe on the array. No
filters were applied to the dataset. By selecting an arbi-
trary threshold of 1 % probability of including false posi-
tives, 306 differentially expressed probes between the
two groups were identified corresponding to 282 unique
genes (Additional file 6). We also carried out analysis
with the parametric test SAM [21] (Additional file 7)
and with the non-parametric RP [22] (Additional file 8).
These analyses showed respectively 107 and 280 genes
common with the ones obtained with PUMA.
Importantly, 54 genes were identified with R-PCA,

PUMA and SAM representing a list of candidates for
biomarker discovery (Additional file 9).

Tissue expression and functional analysis of differentially
expressed genes
A tissue enrichment analysis was then carried out on the
list of differentially expressed genes obtained with
PUMA. Surprisingly, 50 % of them were enriched in
brain [24] (Table 2a). Furthermore, we compared them
to those genes expressed in the DA neurons of the SN,
the key site of degeneration in PD. To this purpose, we
took advantage of the gene expression profile of mouse
DA neurons in the SN that we have recently obtained by
coupling transgenic labelling, Laser Capture Microdis-
section and Affymetrix expression analysis [26–28]. After
converting the mouse gene annotation to human annota-
tion, 135 genes were common to the 282 genes identified
with the co-expression analysis (Additional file 10). These
findings were confirmed for the list of genes obtained with
SAM (data not shown) and prove an extensive overlap
between genes expressed in mouse DA neurons and those
differentially expressed in the blood of PD patients.
We then took advantage of Gene Ontology and GSEA

to identify enriched biological pathways (Additional 11).
As expected from previous studies both in PD blood and
post-mortem brains, the most significant terms include
“lymphocyte activation”, “lipid homeostasis”, “midbrain
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development” and “leukocyte activation”. Importantly,
we also identified for the first time a strong enrichment
in epigenetic-related Gene Ontology terms such “regula-
tion of gene expression, epigenetic” and “chromatin as-
sembly or disassembly” (Table 2b). These processes were
also enriched in the list of differentially expressed genes

obtained with SAM (Additional file 7). To validate the
involvement of transcripts associated to chromatin re-
modeling and methylation-dependent processes, blood
samples from the “Discovery set” were tested with RT-
qPCR assays for the differentially regulated CBX5,
HELLS and MECP2 mRNAs as well as for ASFA1,

a

b

Fig. 1 Ranking-PCA applied to the 395 selected variables to compare PD patients and HCs. a. Representation of the samples along the first
canonical root. The first canonical root (y-axis) is reported for each sample (x-axis). Blue circles correspond to control samples while red circles to
pathological samples. The solid line represents the separation between the two classes. The variables are reported in Additional file 3 in the order
in which they are included in the model. b. Functional annotation analysis of the 395 variables. Over-represented GO annotations with at least 10
genes and P < 0.02 (Fisher exact probability) are presented. The complete data of enriched GO annotations are available in Additional file 5
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DNMT3A and PRMT1 as part of the very same GO gene
list (Additional file 11). As shown in Additional file 12,
their differential expression was confirmed.

Validation of selected differentially expressed genes
We carried out RT-qPCR on additional un-profiled sam-
ples to independently assess expression changes for a se-
lected group of genes obtained from the array data.
Blood samples were collected from 24 sex-, age- and
ethnicity-matched subjects: 12 sporadic PD (68.8 years ±
5.2 SD) and 12 HC (68.0 years ± 1.5 SD) (“Validation set”).
Enrolment inclusion criteria and procedures were as those
defined for the “Discovery set”. Clinical and demographic
characteristics of subjects are reported in Table 1.
Genes for validation were selected from the candidates

list of biomarkers commonly obtained with R-PCA,
PUMA and SAM analysis (Additional file 9). Four tran-
scripts were chosen among the ones with the most sig-
nificant P-values (p < 0.0003) and tested with RT-qPCR.
Data were normalized to the geometric mean of PGK
and UBC, the most reliable reference genes. These were
identified using TaqMan® array human endogenous con-
trol cards (Applied Biosystems, Foster City, CA, USA) as
reported in Materials and methods section and in
Additional file 13. As shown in Fig. 2a, statistically sig-
nificant results from RT-qPCR analysis were achieved

for Chromobox homolog 5 (CBX5) (P = 2.88E-02), Tran-
scription factor 3 (TCF3) (P = 5.12E-04), Dedicator of
cytokinesis 10 (DOCK10) (P = 1.52E-02) and Mannosi-
dase, alpha class 1C (MAN1C1) (P = 1.15E-03). Overall,
these RT-qPCR data validate expression changes identi-
fied through array analysis with a different technology
and on an independent set of samples.
To correlate these findings with genes previously iden-

tified as differentially expressed in PD post-mortem
brains and blood [29, 30], we have found a significant
difference of expression in the very same “Validation set”
for Aldehyde Dehydrogenase 1 Family, member A
(ALDH1A1) (P = 1.51E-02), Proteasome (prosome, macro-
pain) 26 S subunit PSMC4 (P = 1.80E-03) and Heat shock
70 kDa protein 8 (HSPA8) (P = 8.20E-03) but not for
Huntingtin interacting protein 2/ubiquitin-conjugating
enzyme E2K (HIP2/UBE2K) (P = 3.00E-04) (Fig. 2b).

Drug network analysis of PD-associated genes
In the search for potential new PD treatments we investi-
gated whether FDA-approved drugs could elicit a tran-
scriptional profile similar or opposite to the one observed
in peripheral blood of PD patients. This approach is based
on the observation that a large portion of differentially
expressed genes in PD blood is expressed in mesencephalic
DA neurons and that altered GO biological terms are

Table 2 Identification of tissue-enrichment terms and biological processes associated with selected genes dysregulated in blood of
PD patients versus controls

Category Term Count Percent P-Value Benjamini

a

UP TISSUE Brain 141 50.00 7.4E-3 7.1E-1

UP TISSUE Testis 70 24.08 1.9E-2 8.0E-1

UP TISSUE Epithelium 59 20.09 3.2E-2 8.4E-1

UP TISSUE Lymphoma 4 1.04 6.1E-2 9.3E-1

UP TISSUE Testicle 3 1.01 7.4E-2 9.2E-1

b

GOTERM_BP_FAT ncRNA processing 10 3.05 4.2E-3 1.0E0

GOTERM_BP_FAT regulation of gene expression, epigenetic 6 2.01 1.1E-2 1.0E0

GOTERM_BP_FAT lymphocyte activation 10 3.05 1.3E-2 1.0E0

GOTERM_BP_FAT lipid homeostasis 5 1.08 1.5E-2 1.0E0

GOTERM_BP_FAT chromatin assembly or disassembly 7 2.05 1.7E-2 9.9E-1

GOTERM_BP_FAT midbrain development 3 1.01 2.0E-2 9.9E-1

GOTERM_BP_FAT chemical homeostasis 17 6.00 2.9E-2 1.0E0

GOTERM_BP_FAT negative regulation of protein kinase cascade 4 1.04 3.0E-2 1.0E0

GOTERM_BP_FAT ncRNA metabolic process 9 3.02 3.5E-2 1.0E0

GOTERM_BP_FAT regulation of action potential 5 1.08 3.8E-2 1.0E0

GOTERM_BP_FAT leukocyte activation 10 3.05 3.9E-2 1.0E0

GOTERM_BP_FAT cell activation 11 3.09 4.2E-2 1.0E0

a)Tissue enrichment analysis. Count: number of genes involved in the term; %: percentage of involved genes/total genes; P-Value: modified fisher exact P-value,
EASE Score; Benjamini: adjusted P-value using Benjamini-Hochberg procedure. b)Biological processes identified by GO annotations (DAVID)
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common in PD blood and post-mortem brains. To this pur-
pose we took advantage of a new approach to identify drug
mode of action from gene expression profiles [31]. Specif-
ically, drugs are connected in a network if they elicit a
similar transcriptional response according to a new similar-
ity measure based on a modification of GSEA [25]. The
drug network consists of 1309 compounds that can be sub-
divided in 106 communities of drugs, i.e. groups of drugs
very similar to each other with a similar mode of action
but very different from other drugs in the network. To in-
vestigate which drugs trigger the most similar response to

the changes found in PD patients, genes were ranked ac-
cording to their differential expression in PD versus con-
trol and the network was queried. The drugs sorted
according to their similarity to PD are shown in the
Additional file 14. Interestingly, as reported in Fig. 3a, sev-
eral antipsychotic drugs elicited a transcriptional profile
similar to PD (Community 100, P = 3.83x10-6 considering
the top-ranked 35 similar to PD drugs and P = 6.76x10-9
considering the top-ranked 100 ones). On the other hand,
examining the drugs which elicit an “anti-similar” tran-
scriptional response (i.e. which up-regulate genes found
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Fig. 2 RT-qPCR validation experiments of selected transcripts. The box plots show the natural logarithms of the relative gene expression levels
(calculated by dividing the RT-qPCR values by the geometric mean of the HKs PGK1 and UBC raw quantities) for the individual genes (a and b) in
blood samples of 12 de novo PD patients and 12 age- and sex-matched HCs. The statistical significance was calculated by t-test (*p < 0.05,
**p < 0.01, ***p < 0.001)

Fig. 3 Drug network analysis. Sub-networks connected to genome-wide ranked lists of genes sorted according to their differential expression in
PD: decreasing order in (a) and increasing order in (b), once they are integrated in the drug network as described in Iorio et al. [31]. For clarity
we included only the first 35 most similar (resp. “anti-similar”) to PD drugs. Edge thickness is inversely proportional to the distance between the
drugs and the conditions. Several antipsychotic drugs (community n. 100 in a) elicit a transcriptional response similar to PD while compounds
used for PD treatment elicit an “anti-similar” to PD response (bold in b). The complete list is available in Additional file 14
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down-regulated in PD and vice-versa), it is noteworthy
that apomorphine and levodopa occupy top-ranked
positions and are currently used for treating PD
(Fig. 3b and Additional file 14).

Discussion
This work is the largest study to date of the peripheral
whole blood transcriptome of drug-naïve sporadic PD
patients at the time of their first diagnosis. A gene panel
discriminates PD patients from healthy controls. While
we confirmed alterations previously found in PD blood
and post-mortem brains such as neuronal apoptosis,
lymphocyte activation and mitochondrial dysfunction,
we have also unveiled changes enriched in biological
terms related to epigenetic modifications including chro-
matin remodeling and methylation.
A correct diagnosis at the early stages of the disease

remains an unresolved and crucial issue in PD. This is
important to choose the best medical treatment from
disease onset and to apply the best criteria for patient
selection and enrollment in clinical trials. The potential
of blood as a surrogate tissue in PD is under intense
scrutiny and blood transcriptomics is expected to facili-
tate the identification of biomarkers for early diagnosis
and drug discovery [32].
A short but significant list of recent microarray-

based studies has used human blood as RNA source
to look for differentially expressed genes in sporadic and
genetic PD patients [5–11]. In the pioneering work by
Scherzer et al. [5], 22 genes were identified with microarray
profiling of whole blood of 50 PD patients, among which 9
de novo subjects. A risk marker given by 8 genes (VDR,
HIP2, CLTB, FPRL2, CA12, CEACAM4, ACRV1, and
UTX) predicted PD and was not biased by dopamine re-
placement therapy. The analysis of a genetically
homogenous population of 88 Ashkenazi patients [6], in-
cluding 20 de novo, evidenced for the first time the de-
creased expression of B cells-related genes in PD.
Karlssonn et al. [8] analyzed samples from 79 PD subjects
at different stages of the disease, including 23 de novo pa-
tients and relative controls, proposing a classifier predict-
ing sporadic and de novo PD. LRPPRC, BCL2 and SRSF8
were shared with the 22 genes list as in Scherzer et al. [5].
Furthermore, it presented HSPA8 and UBE2K/HIP2 in
common with Molochnikov et al. [30]. Potashkin et al. [7]
took advantage of splice variant-specific microarrays to
identify a biosignature composed of 13 mRNAs (c5orf4,
wls, macf1, prg3, eftud2, pkm2, slc14a1-s, slc14a1-l, mpp1,
copz1, znf160, map4k1 and znf134) whose expression is al-
tered in peripheral blood of early-stage PD patients. Re-
cently, they identified two novel longitudinally markers
(HNF4 and PTB1) by means of network-based and tran-
scriptomic meta-analyses [33]. Interestingly, gene

expression analysis of peripheral blood mononuclear cells
from 20 sporadic PD patients and 9 individuals, heterozy-
gous for the LRRK2 G2019S mutation, showed deregula-
tion of the immune system, endocytosis and eukaryotic
initiation factor 2 signaling [11].
Although there are a number of promising gene signa-

tures, blood transcriptomics have not yet delivered the
expected results for biomarker discovery in PD. One of
the major concerns is the scarce overlap among candi-
date genes lists of these studies. Variances in the proce-
dures for collection, processing and analysis of samples
may strongly limit the reproducibility of gene expression
data. Importantly, these differences may also be explained
in biological terms. First, genetic variations in human pop-
ulations may lead to diversity in transcriptional changes in
disease. Furthermore, the majority of these works analyzed
peripheral blood samples from sporadic PD patients at dif-
ferent stages of the disease and under pharmacotherapy
raising the questions of whether changes are related to the
disease stage, therapy or both. Finally, it is now clear that
PD is a systemic and a highly heterogeneous disease, as
classified according to distinct clinical subtypes [34].
On the other hand, blood transcriptomics studies

identify a common repertory of enriched GO biological
terms as altered in PD. These include “neuronal apop-
tosis”, “mitochondrial dysfunction”, “leukocyte activa-
tion” and “deregulation of the immune system”.
To overcome part of the limitations of previous ana-

lyses, our study design takes advantage of 1) a carefully
selected drug-naïve and de novo ethnically-defined PD
population size, 2) standardized, simple and well-defined
technologies and methods whose protocols and proce-
dures are generally recognized as robust and reproducible.
Our purpose was to establish an optimized pipeline to
collect biological samples for blood transcriptomics to
minimize confounding signals such as artifacts of sample
preparation and processing while maximizing reproduci-
bility and sensitivity. Most importantly, the use of the
NuGEN method for target preparation results in higher
sensitivity (three times increase in Present calls) leading to
a wider range of intensities and a smaller impact of tech-
nical variability.
By performing data analyses, we prove that gene

expression profiling of peripheral blood discriminates
patients from HCs. Furthermore, we identified a list of
genes (Additional file 9) that were differentially
expressed in PD patients at the onset of motor symp-
toms and before initiating any pharmacological treat-
ment. Selected transcripts were validated in an
independent cohort of patients and HCs (“Validation
set”) with a different technology (RT-qPCR) strengthen-
ing our findings.
A very limited overlap was found in the identities of

single genes between our study and those previously
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published. This is not surprising and probably due to
differences in the cohort of patients and in technical
settings.
The level of expression changes between PD patients

and HC was in the range of 20 to 50 %. While these
values are similar to the ones identified in other blood
transcriptomics studies, patients were at an early stage
of the disease and differential expression may increase
with disease progression. Furthermore, while differential
expression may occur only in selected cells’ populations,
genes may be expressed in the majority of blood cell
types decreasing fold changes measured in whole blood.
Our analyses confirmed the main biological GO terms

found altered in previous blood transcriptomics of PD
patients. Together with “neuronal apoptosis” and “mito-
chondrial dysfunction”, differentially expressed pathways
include “lymphocyte activation” and “leukocyte activa-
tion”. Among the single validated transcripts, MAN1C1,
mannosidase, alpha, class 1C, member 1 is a protein
partner of MAN1A2 previously identified by Scherzer
et al. [5]. These two key α1,2-mannosidases catalyze the
earliest steps of mannose removal required for the con-
version of high mannose to hybrid and subsequently
complex N-glycans. Current hypothesis suggests a key
role for core N-glycan structures (i.e. mannose) in pro-
viding signals to the innate immunity system for recog-
nizing cells during inflammation [35]. Transcription
factor 3 (TCF3), also known as E2A, plays an important
role in the development and differentiation of B and T
lymphocytes [36]. It mainly functions as a transcriptional
repressor [37] being counteracted at multiple levels by
Wnt signaling [38]. This pathway is crucial in normal
function and survival of midbrain DA neurons [39] and
its alteration has been already reported in gene expres-
sion studies of peripheral blood of PD patients [7, 11].
DOCK10 (Dedicator of cytokinesis 10) is a gene that en-
codes a member of the zizimin subfamily belonging to
the Dock protein family, comprising atypical Rho guan-
ine nucleotide exchange factors for Rac and/or Cdc42
GTPases [40]. Dock10 may represent a point of conver-
gence for IL-4 signaling and small Rho GTPase function
in B cells [41] and this might be important for the well-
known dysregulation of IL-4 signaling in peripheral
blood of sporadic PD [11].
Importantly, we make the original observation that

crucial elements of chromatin remodeling and methyl-
transferase machineries are major targets of PD-associated
molecular events in living patients suggesting a role of epi-
genetic regulation in neurodegeneration [42]. Recent data
support epigenetic modulation in neurodegenerative dis-
eases such as Alzheimer’s, Huntington’s and Amyotrophic
Lateral Sclerosis. A direct relationship between epigenetics
and PD has not been systematically assessed although
sparse evidences are available. Dopamine depletion in PD

is associated with a reduction in histone H3K4me3,
whereas chronic levodopa therapy leads to deacetylation
of histones H4K5, K8, K12, and K16. Treatment of ani-
mals with MPTP (1-methyl-4-phenyl-1,2,3,6- tetrahydro-
pyridine), widely used as a PD model, induces H3
acetylation, which is reduced after treatment with levo-
dopa [43]. Interestingly, methylation of SNCA intron 1
was found reduced in DNA from sporadic PD patients’
SN, putamen, and cortex, while its expression in a PD pa-
tient heterozygous for the A53T mutation was found to
be monoallelic due to epigenetic silencing [44–46]. In fact,
hypomethylation of SNCA and LRRK2 in leukocytes of
peripheral blood has been suggested as a potential nonin-
vasive biomarker for PD early diagnosis [47]. Most re-
cently, α-synuclein was found to trigger DNMT1 aberrant
cytoplasmic localization in PD post-mortem brains and
animal models leading to a global DNA hypomethylation.
Furthermore, DNMT1 protein itself was reduced to 50 %
in post-mortem PD brains [48].
In this context an intriguing chain of events has been

proposed linking mitochondrial dysfunction to epigen-
etic changes in PD [49–51]. The age-dependent down-
regulation of metallothioneins may render DA neurons
susceptible to oxidative stress and Charnoly body forma-
tion, an early and universal mitochondrial biomarker of
cell injury, apoptosis and progressive neurodegeneration.
In turn, the formation of 8-hydroxy, 2-deoxyguanosine,
a PD biomarker in urine, can affect the epigenetic status
of nuclear DNA.
Currently, several epigenetic-based drugs are investi-

gated as potential treatment strategies for PD, including
HDAC and DNMT inhibitors [52–55]. Further work is
needed in evaluating these promising therapeutics.
Chromobox homolog 5 (CBX5), also named HP1a, is

the most differentially expressed gene in our analysis. It
belongs to a class of multifunctional chromatin-associated
adapter proteins present in constitutive heterochromatin.
There it plays an essential role in establishing and main-
taining heterochromatin-mediated gene silencing [56]. In
addition to self-association, HP1-interacting partners
include the DNA methyltransferase DNMT3A, which we
have found decreased in PD patients. DNMT3A is re-
quired for de novo DNA methylation [57], and its activity
has been related to several functions in the nervous sys-
tem including neuronal differentiation, synaptic plasticity
and memory formation. Microarray data also detect
changes in the expression of other genes involved in chro-
matin remodeling and epigenetic regulation such as
MECP2, an essential epigenetic regulator in human brain
development that has been associated to activity-
dependent synaptic maturation [58], and ASF1A, a histone
chaperone that participates in nucleosomes disassemblies
and interacts with histone-acetylation-recognizing bromo-
domains [59]. Protein arginine methyltransferase (Prmt1),
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Thymocyte selection-associated high mobility group box
(Tox), Enhancer of zeste homolog 1 (Ezh1), and Sin3A-
associated protein (SAP30) were also dysregulated.
Changes in peripheral blood seem to reflect mo-

lecular events in the brain. Selected genes and GO
terms, identified as dysregulated in PD post-mortem
brains, were previously confirmed as altered in the
peripheral blood of living patients. In this context,
Grunblatt et al. [29] carried out RT-qPCR in more
than 100 medicated and 11 de novo PD patients to
study 12 transcripts previously proved to be differen-
tially expressed in PD post-mortem brains. Four of
them were proposed as biomarkers for PD with a
specificity of more than 80 %. Recently, Molochnikov
et al. [30] presented a highly similar five-gene set
(SKP1A, HIP2, ALDH1A1, PSMC4 and HSPA8) that
differentiated early PD from HCs.
Here we show that expression of PD-associated genes

in blood is enriched in brain tissue. Furthermore, about
50 % of these genes are also expressed in DA neurons
of the SN, the key site of neurodegeneration in PD. As
expected, the enriched GO terms of this gene expres-
sion study present a significant overlap with those un-
veiled in gene expression profiling of PD post-mortem
brains. Consequently, we specifically investigated the
expression of selected genes previously shown as dif-
ferentially expressed in both PD post-mortem brains
and blood [29, 30]. Considering that we could not ob-
serve gene expression changes for those genes since no
Affymetrix ID probes were present on the chips used in
this study, we took advantage of RT-qPCR assays to test
their expression in the “Validation set” of samples. We
thus confirmed a significant difference of expression for
ALDH1A1, a detoxification enzyme that participates in
the metabolism of catecholamines and plays a key role in
the protection of the nigrostriatal DA neurons [60], for
PSMC4, involved in the ubiquitin proteasome degradation
pathway and for HSPA8 (Fig. 2b). Their differential ex-
pression further corroborates that events associated with
degeneration in PD post-mortem brain can also be de-
tected in peripheral blood of living patients.
These observations are substantially strengthened by

our drug network analysis. Among the 106 communi-
ties that grouped 1309 compounds for their gene ex-
pression patterns, our study revealed that the
“antipsychotic” drug community was significantly
mimicking PD gene expression phenotypes. This com-
munity of drugs, acting at the level of DA neuro-
transmission, highlights that we are detecting changes
in gene patterns relevant for CNS function in PD. In
addition, drugs as apomorphine and levodopa, two
molecules currently used in PD clinical treatment, are
selected in the community of drugs that elicit an
“antisimilar” transcriptional response.

Conclusions
To our knowledge, this is the largest study to date using
whole peripheral blood to investigate early gene expres-
sion changes in drug-naïve and de novo sporadic PD
patients. We are conscious that replication is needed in
a larger well-characterized prospective study to confirm
and define the clinical use of this set of transcripts.
The identification of altered biological pathways as

early events in living sporadic PD subjects [61] may dir-
ect future investigation in the search of validated drug
targets for therapeutic intervention. In this context, it
will be interesting to study the role of epigenomic
changes in PD and the use of epigenetic modifiers as PD
candidate drugs.

Additional files

Additional file 1: Venn diagram of probe sets scored as present
calls following three different amplification methods. Blood
collected from a single healthy donor was divided in 3 groups of 2
samples each, and each group was processed for microarray target
preparation according to 1) Affymetrix one − cycle cDNA synthesis/
Affymetrix IVT (Affymetrix), 2) Illumina probe synthesis protocol
(Ambion), 3) Ovation™ Whole Blood Solution (NuGEN). Total RNA
input amounts were based on manufacturer’s recommendations for
each method. Hybridizations of targets were performed to HG −
U133A 2.0 arrays (Affymetrix, Santa Clara, CA). Cell intensity values and
probe detection calls were computed using the AffymetrixGeneChip
Operating Software (GCOS). This Venn diagram shows the overlap of
Affymetrix probe sets with detection call “Present” following the three
amplification methods (Affymetrix, Illumina and NuGEN). Data are relative to
one of the two replicates and are good representatives of both replicates.
3553 present calls were detected exclusively using the NuGEN (Ovation TM
Whole Blood Solution) method in a reproducible fashion. Therefore, despite
starting from a much lower RNA amount, the NuGEN protocol detected a
significant number of transcripts that were not identified with any of the other
methods tested in this study (~29 % and 37 % more, respectively, than with
the Illumina and Affymetrix protocols). (PDF 3122 kb)

Additional file 2: Score plots of the first 6 PCs calculated on the
dataset constituted by the 395 variables selected by Ranking-PCA.
Control samples are represented as filled circles while pathological
samples as void circles. Of the original 60 samples, one (a control sample)
did not pass the microarray hybridization quality controls and was
excluded from further analyses. All results of bioinformatics analyses
shown in this paper refer to this set of 59 samples. (PDF 3122 kb)

Additional file 3: List of the 395 variables selected by Ranking-PCA
to discriminate between PD patients and controls. Order of variables,
Affymetrix Probe Set IDs, gene symbols and names are indicated.
(PDF 3122 kb)

Additional file 4: Square of the Mahalanobis distance calculated for
each sample from both control and pathological class models.
(PDF 3122 kb)

Additional file 5: Main processes (GOTERM_BP_FAT as classified by
DAVID Gene Ontology) altered in whole peripheral blood cells in
the 395 selected variables comparing PD patients and controls. GO
annotations with at least 3 genes and P < 0.05 (Fisher exact probability)
are presented. Count: number of genes involved in the term; %: percentage
of involved genes/total genes; P-Value: modified fisher exact P-value, EASE
Score; Benjamini: adjusted P-value using Benjamini-Hochberg procedure.
(PDF 3122 kb)

Additional file 6: List of differentially expressed genes between PD
patients and controls based on PUMA. Ratios are calculated as
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differences in gene expression between samples of PD patients and
controls, with the top up-regulated genes first. (PDF 3122 kb)

Additional file 7: List of differentially expressed genes between PD
patients and controls based on Significance Analysis of Microarrays
(SAM). Significance Analysis of Microarrays was performed on normalized
and filtered microarray data as described in the main text. The SAM test
was run using 1000 permutations and a False Discovery Rate (FDR) of 10 %.
Ratios are calculated as differences in gene expression between samples of
PD patients and controls, with the top up-regulated genes first.
(PDF 3122 kb)

Additional file 8: List of differentially expressed genes between PD
patients and controls based on Rank Product analysis (RP). Rank Product
analysis was performed on normalized and filtered microarray data as
described in the main text. The RP test was run using 100 permutations
and an FDR of 0.005 % and looking for up- and down-regulated genes
separately. Low RP-Values indicate high significance of the results. Genes
are shown with the most significant first. (PDF 3122 kb)

Additional file 9: List of common differentially expressed genes
between PD patients and controls based on SAM and PUMA analyses
and the 395 selected variables of the Ranking-PCA. Genes are ranked
according to the P- values based on PUMA analysis. Order of the 395
variables, Affymetrix Probe Set IDs, gene symbols and names are indicated.
Names shown in bold indicate transcripts validated by RT-qPCR (Fig. 2a).
(PDF 3122 kb)

Additional file 10: List of common genes between A9 DA neurons
of the SN in the mouse and differentially expressed transcripts in
the blood of PD patients according to SAM (a) and PUMA (b).
(PDF 3122 kb)

Additional file 11: Statistically significant gene sets from GSEA
analyses. GSEA was run on the normalized, unfiltered microarray dataset
as suggested in the tools implementation (http://www.broadinstitute.org/
gsea/ version 2.06), and using the c5 - GO gene sets collection of the
Molecular Signatures Database (MSigDB) (http://www.broadinstitute.org/
gsea/msigdb/). The test was performed separately on each of the c5
sub-collections (biological process, molecular function and cellular
component), running 1000 permutations and excluding gene sets
with fewer than 5 genes or more than 150 (the latter, to retain
granularity). Names (Gene Symbol) shown in bold indicate transcripts
measured by RT-qPCR (Additional file 12). (PDF 3122 kb)

Additional file 12: Genes involved in chromatin remodeling and
methylation are targeted in PD. Selected samples (12 PD and 12 HC
blood samples) previously processed for gene expression profiling were
also tested in RT-qPCR assays for several targets (CBX5, HELLS, MECP2,
ASF1A, DNMT3A and PRMT1) that were identified by data analyses.
Retrotranscription was performed using 1 μg of RNA and the iSCRIPT™
cDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s protocol.
Real Time qPCR was executed using SYBER-Green PCR Master Mix (Applied
Biosystem) and an iCycler IQ Real Time PCR System (Bio-Rad). Sequences of
gene specific primers are reported in the table below. Expression of the gene
of interest was normalized to β-actin. The relative expression of each sample
was calculated by the formula 2 exp-ΔΔCt (User Bulletin 2 of the ABI Prism
7700 Sequence Detection System). The amplified products were separated
on a 2 % agarose gel and visualized with ethidium bromide staining.
(PDF 3122 kb)

Additional file 13: Selection of reliable reference genes for peripheral
blood gene expression analyses. TaqMan® array human endogenous
control cards (Applied Biosystems, Foster City, CA, USA) are 384-well
microfluidic cards containing 16 human TaqMan Gene Expression
Assays. They were used to evaluate the endogenous controls specific for
peripheral blood that exhibit minimal differential expression. Peripheral
blood samples from 8 PD and 8 HC gender- and age-matched subjects
were processed following the manufacturer’s instructions (Applied Biosystems,
Foster City, CA, USA). The expression stability was determined and compared
by two commonly used algorithms (geNorm and NormFinder). By comparing
the output of these two methods and by accepting gene expression levels of
qPCR at Ct values≤ 29, we obtained a list of the most stable reference genes
in human peripheral blood. See the following Figures reporting output files of
the analyses. As the best reference genes, PGK1, UBC and GAPDH were

selected according to the following practical considerations: PGK1 is the best
reference gene according to geNorm and NormFinder analyses; UBC presents
similar stability strength to PGK1 and a different threshold Ct value; GAPDH is
one of the most widely used reference genes in peripheral blood expression
studies. The gene expression analyses of the first experimental data sets (data
not shown) reveled that GAPDH had a higher variability compared to PGK1
and UBC; therefore, we decided to evaluate the relative gene expression by
normalizing the data to the geometric mean of PGK1 and UBC. (PDF 3122 kb)

Additional file 14: List of similar- and anti-similar-to-PD compounds
from drug network analysis. Community identifiers, drugs and
community enrichment p-values resulting from the drug network analysis
of genome-wide ranked lists of genes sorted according to their differential
expression in PD. Drugs are sorted according to their similarity to PD (a) and
according to their “anti-similarity” (b) as explained in the main manuscript.
(PDF 3121 kb)
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