88 research outputs found

    A Biochemical Analysis of the Factors Influencing P0 Oligomerization in Xenopus laevis Peripheral Nerve Myelin

    Get PDF
    Thesis advisor: Daniel A. KirschnerProtein zero (P0), the major structural protein of peripheral nerve myelin, is a ~30 kDa integral membrane glycoprotein consisting of an extracellular domain, a transmembrane domain, and a palmitoylated cytoplasmic domain. In native membranes of Xenopus laevis it exists primarily as a dimer. To determine the effects of glycosylation, acylation, and hydrophobic interactions on protein dimerization, I used SDS polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting, and high-performance thin layer chromatography (HPTLC) to analyze the effects of deglycosylation, deacylation, and various detergent treatments on myelin isolated from Xenopus laevis sciatic nerve. These treatments showed no effect on P0 oligomerization, suggesting that glycosylation, acylation, and hydrophobic interactions disrupted by these detergents do not underlie P0 dimerization. The data points to the likelihood that covalent linkages contribute to P0 oligomerizaztion in Xenopus.Thesis (BS) — Boston College, 2004.Submitted to: Boston College. College of Arts and Sciences.Discipline: Biology.Discipline: College Honors Program

    A research agenda for the UAE iPad Initiative

    Get PDF
    The 2012-2013 academic year has seen the beginning of a national initiative in the United Arab Emirates to equip all students in federal universities/colleges with iPads, and to make use of this mobile device in teaching and learning. Within the context of this national initiative, each federal institution (Zayed University, UAE University and the Higher Colleges of Technology) has begun to implement iPads in its curriculum, and to gather data about this implementation to inform further development. In this paper, representatives of the three federal institutions map out the research approach which they are taking to investigate the progress of the iPad initiative

    Inhibition of Cholesterol Biosynthesis Through RNF145-Dependent Ubiquitination of SCAP

    Get PDF
    Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expression of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. Conversely, acute suppression of RNF145 via shRNA-mediated knockdown, or chronic inactivation of RNF145 by genetic deletion, potentiates the expression of cholesterol biosynthetic genes and increases cholesterol levels both in liver and plasma. Mechanistic studies show that RNF145 triggers ubiquitination of SCAP on lysine residues within a cytoplasmic loop essential for COPII binding, potentially inhibiting its transport to Golgi and subsequent processing of SREBP-2. These findings define an additional mechanism linking hepatic sterol levels to the reciprocal actions of the SREBP-2 and LXR pathways

    Seasonal, interannual and spatial patterns of bacterial taxonomy and genetic functions in the Arctic Ocean

    Get PDF
    Bacterial diversity and function across time and space in the Arctic Ocean, including the Polar Night, remain virtually unknown. In the FRAM Observatory, we study microbial composition and genetic potential in ice-covered and ice-free regions of the Fram Strait, the major gateway between the Arctic and Atlantic Oceans. A continuous amplicon time-series, derived from moored autonomous samplers, revealed marked taxonomic and functional seasonality among bacterial communities in the ice-free West Spitsbergen Current, with distinct succession of taxonomic modules. PacBio long-read metagenomes showed peaks of proteorhodopsin- and DMSP-utilizing genes in late summer, whereas winter mixing of the water column covaried with ammonia- and nitrite-metabolizing bacterial genes. In the ice-covered East Greenland Current, taxonomic and functional diversity varied less with seasons, with prominent influence of ice cover and polar water masses. For instance, high-ice conditions coincided with higher number of peptidoglycan-utilizing genes. Continuous observations were contextualized with five-year amplicon data from summertime samples collected across Fram Strait, integrating seasonal and interannual patterns of bacterial community dynamics. This fundamental baseline information helps understanding ecological and biogeochemical processes in a marine region severely affected by climate change

    Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota)

    Get PDF
    The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12,817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT 1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi

    Atlantic water influx and sea-ice cover drive taxonomic and functional shifts in Arctic marine bacterial communities

    Get PDF
    The Arctic Ocean is experiencing unprecedented changes because of climate warming, necessitating detailed analyses on the ecology and dynamics of biological communities to understand current and future ecosystem shifts. Here, we generated a four-year, high-resolution amplicon dataset along with one annual cycle of PacBio HiFi read metagenomes from the East Greenland Current (EGC), and combined this with datasets spanning different spatiotemporal scales (Tara Arctic and MOSAiC) to assess the impact of Atlantic water influx and sea-ice cover on bacterial communities in the Arctic Ocean. Densely ice-covered polar waters harboured a temporally stable, resident microbiome. Atlantic water influx and reduced sea-ice cover resulted in the dominance of seasonally fluctuating populations, resembling a process of “replacement” through advection, mixing and environmental sorting. We identified bacterial signature populations of distinct environmental regimes, including polar night and high-ice cover, and assessed their ecological roles. Dynamics of signature populations were consistent across the wider Arctic; e.g. those associated with dense ice cover and winter in the EGC were abundant in the central Arctic Ocean in winter. Population- and community-level analyses revealed metabolic distinctions between bacteria affiliated with Arctic and Atlantic conditions; the former with increased potential to use bacterial- and terrestrial-derived substrates or inorganic compounds. Our evidence on bacterial dynamics over spatiotemporal scales provides novel insights into Arctic ecology and indicates a progressing Biological Atlantification of the warming Arctic Ocean, with consequences for food webs and biogeochemical cycles

    Deconstructing nucleotide binding activity of the Mdm2 RING domain

    Get PDF
    Mdm2, a central negative regulator of the p53 tumor suppressor, possesses a Really Interesting New Gene (RING) domain within its C-terminus. In addition to E3 ubiquitin ligase activity, the Mdm2 RING preferentially binds adenine base nucleotides, and such binding leads to a conformational change in the Mdm2 C-terminus. Here, we present further biochemical analysis of the nucleotide–Mdm2 interaction. We have found that MdmX, an Mdm2 family member with high sequence homology, binds adenine nucleotides with similar affinity and specificity as Mdm2, suggesting that residues involved in nucleotide binding may be conserved between the two proteins and adenosine triphosphate (ATP) binding may have similar functional consequences for both Mdm family members. By generating and testing a series of proteins with deletions and substitution mutations within the Mdm2 RING, we mapped the specific adenine nucleotide binding region of Mdm2 to residues 429–484, encompassing the minimal RING domain. Using a series of ATP derivatives, we demonstrate that phosphate coordination by the Mdm2 P-loop contributes to, but is not primarily responsible for, ATP binding. Additionally, we have identified the 2′ and 3′ hydroxyls of the ribose and the C6 amino group of the adenine base moiety as being essential for binding
    corecore